Environmental Product Declaration

Unplasticised PVC system

Dosing application in a water treatment plant

1. Declaration of general information

1.1 Introduction

GF Piping Systems is one of the three divisions within Georg Fischer Corporation and a leading provider of plastic and metal piping systems with global market presence. The product portfolio includes pipes, fittings, valves and the corresponding automation and jointing technology for industry, building technology as well as water and gas utilities. Georg Fischer Piping Systems proactively incorporates its environmental responsibility into its everyday business activities. Because we understand environmental awareness as one of the corporation's core values, internal structures and processes are geared towards sustainability. In this context, life cycle assessments are the correct tool to gain insight in the different life cycle phases of our systems.

This EPD is based on a detailed background report written by the Flemish Institute for technological research (Vito). The report is in line with EN 15804+A1 "Sustainability of construction works – environmental product declarations – Core rules for the product category of construction products". The data of the study complies with the quality requirements set out in EN 15804+A1

(EN 15804+A1:2013, Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products). Data regarding the production of the pipe system components is company specific and was provided by GF Piping Systems.

Declaration

Dectaration	
Declaration owner & Program	Georg Fischer Piping
operator's name	Systems Ltd.
Validity	26.03.2020 - 25.03.2025
Declaration Number	GFPS-EPD_2005-3_5
EPD-Type	Cradle to grave
Data calculated by	Vito NV (Flemish Institute for
	technological research)
	www.vito.be
Life Cycle Inventory (LCI) source	Ecoinvent v 3.5
for generic background processes	Industry data 2.0 database
Software	SimaPro 9.0.0

According to EN 15804+A1

*++ +G

Georg Fischer Piping Systems Ltd. Ebnatstrasse 111 CH-8201 Schaffhausen +41 (0) 52 631 11 11 www.gfps.com/sustainability sustainability.ps@georgfischer.com

1.2 System

The analyzed case represents an exemplary system for a chemical dosing application in a water treatment plant. The system is designed in the dimension d40 and installed in Valencia (Spain). Solvent cement is used for the jointing.

- 1 Pressure relief valve type V185
- (2) 2551 Magmeter flow sensor
- ③ Ball valve type 546
- (4) Diaphragm valve DIASTAR Ten Plus
- 5 Metering pump
- 6 Diaphragm valve type 514
- 7 Tanks
- 8 Level/pressure integral system
- 9 8900 Multi-parameter controller
 - System boundary

Materials

The material of the main pipe system components (pipes and fittings) is PVC-U. The whole system consists of the materials as listed below.

Material		Weight (kg)					
PVC-U		8.9					
Plastics (o	ther than PVC-U)	6.9					
Steel		9.9					
Rubber		0.2					
Other mate	erials	1.0					
Cable (met	tals + plastics)	0.7 + 2.3					
Pumps	Cast iron	2.0					
	Steel	1.6					
	Plastics	1.2					
	Other metals	0.2					

Reference service life 25 years

Please refer to chapters 2.3 for further information on the reference service life of the system.

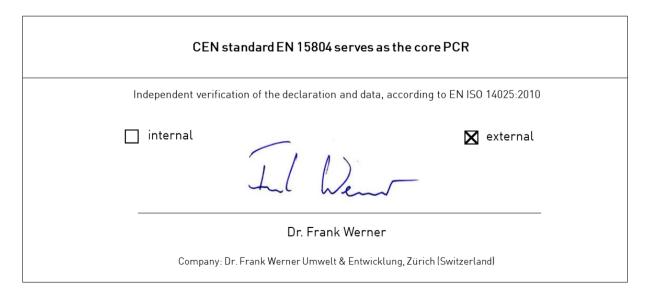
Functional unit (FU)

The dosing application of sodium hypochloride (12.5%) at the water finishing stage of a water treatment plant by a pipe system (d40) over the whole lifetime of the system of 25 years. The system starts at the tank of chemicals and ends at the point where the chemical is injected into the main water line.

Components of the system (number of pieces or meter)

The system mainly consists of Georg Fischer Piping Systems components. However, to complete the system also external components (Ext.) are necessary which are not produced by Georg Fischer Piping Systems. The calculation of the environmental impact of these products is based on publicly available data and assumptions.

	Product Code	Pieces or meter	Material
System components			
PVC-U pipe, d40	161017109	10 m	PVC-U
Tee 90° equal, d40	721200109	2	PVC-U
Elbow 90°, d40	721100109	4	PVC-U
Ball valve type 546, d40	161546605	3	PVC-U (body) and others
Diaphragm valve DIASTAR Ten Plus, d40	161684015	1	PVC-U (body) and others
Diaphragm valve type 514, d40	800047169	2	PVC-U (body) and others
Pressure relief valve type V185, d40	199041364	2	PVC-U (body) and others
2551 Magmeter flow sensor	159001110		PP (sensor body) and others
Level/pressure integral system	159001041	2	PVDF (sensor housing) and
			others
8900 Multi-parameter controller	159000868	1	PBT (housing) and others
Metering pump incl. motor	Ext.	2	Various metals and others
Tanks	Ext.	2	PE
Cable	Ext.	60 m	Copper and others


Components for installation

Bolts	Ext.	40 Stainless steel
Nuts	Ext.	64 Stainless steel
Washers	Ext.	64 Stainless steel
Brackets	Ext.	10 PP

1.3 Comparability

EPDs of construction products may not be comparable if they do not comply with the EN 15804+A1.

1.4 Demonstration of verification

2. Declaration of environmental parameters derived from LCA

2.1 Flow diagram of the processes included in the LCA

* Stage not relevant, ** Environmental impact below cut-off criteria. Please refer to chapter 2.3 for details.

2.2 Parameters describing environmental impacts

	Impact category	Global warming	Ozone depletion	Acidification of soil and water	Eutro- phication	Photo- chemical ozone creation	Abiotic depletion - non fossil	Abiotic depletion - fossil
				Ţ				
		kg CO₂eq	kg CFC-11 eq	kg SO₂eq	kg PO₄³-eq	kg C₂H₄eq	kg Sb eq	MJ
A1-3	Product stage	2.29E+02	3.39E-05	1.71E+00	4.42E-01	9.65E-02	1.22E-02	3.14E+03
A4	Transport to installation	4.08E+01	7.54E-06	1.48E-01	2.52E-02	6.54E-03	3.19E-05	5.95E+02
A5	Installation	5.08E+00	9.52E-07	1.66E-02	2.59E-03	1.19E-01	1.30E-05	9.47E+01
B1-5	Use, Maintenance, Repair, Replace- ment, Refurbish- ment	0	0	0	0	0	0	0
B6	Operational energy use	8.74E+03	9.40E-04	5.28E+01	7.89E+00	1.76E+00	1.32E-02	9.49E+04
B7	Operational water use	0	0	0	0	0	0	0
C1	De-construction/ Demolition	0	0	0	0	0	0	0
C2	Transport to end- of-life treatment	5.93E+00	1.03E-06	1.87E-02	2.97E-03	1.02E-03	3.25E-05	8.69E+01
C3	Waste processing	5.06E+01	5.05E-06	4.76E-02	7.42E-03	2.02E-03	4.02E-05	9.77E+01
C4	Disposal	0	0	0	0	0	0	0

2.3 Scenarios and additional technical information

The analyzed case represents an exemplary system for a chemical dosing application in a water treatment plant.

Product s	tage
A1	The production of the plastic raw material was modeled via generic European data (source: ecoinvent) and complemented by specific data from GF Piping Systems to consider the company specific formulation of the raw material.
42	Wherever possible, the specific transport distances were taken into account. Data from ecoinvent with the respective parameters was used to model the transportation.
43	The use of energy is the most important input for this process step. Pipes are extruded while fittings and valve parts are injection moulded. Each of GF Piping Systems' worldwide production sites is certified according to ISO 14001 (Environmental management systems) and to OHSAS 18001 (Occupational health and safety management systems) or is currently in the certification process. For the production of GF Piping Systems components, electricity mixes for the respective country/continent were used. The production of external products was modeled using generic ecoinvent data records for the process.
Construc	tion process
44	The system is installed in Valencia (Spain). Pipes are transported over a distance of 1 700 km by means of a truck. Fittings, valves and measuring instruments are first transported to storage: measuring instruments via air freight (ecoinvent data record: Transport, freight, aircraft {RER} intercontinental Cut-off, U) over 5 000 km; fittings via truck over 450 km and valves also via truck over 150 km. Afterwards these components as well as bolts, nuts, washers and brackets are transported to the installation site by truck over 1 400 km. The pump is transported to the installation site by truck over 1 500 km. For all transportations via truck the ecoinvent data record "Transport, freight, lorry 16-32 metric ton, EUR05 {RER} transport, freight, lorry 16-32 metric ton, EUR05 Cut-off, U') was used. Loading capacity is 60%.
45	For the installation of the whole system special solvent cement (0.4 kg/FU) and specific cleaner (0.2 kg/FU) for the jointing are necessary. These input materials are transported over 2 000 km by truck to the installation site. Outputs of the complete installation of the system are PVC pipe cut-off (0.06 kg/FU) and packaging waste (3.6 kg/FU) whereof 95% is cardboard. Wood and cardboard are recycled; PE film, nylon belts and PP straps are incinerated. Transport distance to recycling is assumed to be 600 km, transport to incineration is 150 km. Transport is carried out by truck.
Jse stag	
31	There are no further environmental impacts arising from the use of the system. This stage is considered as not relevant.
32-B5	The system is designed to be operated without repair, maintenance, replacement or refurbishment during the reference service life. This is subject to the condition that the system is operated according to the specifications given by GF Piping Systems. The lifetime of a valve is mainly influenced by the actuation cycles. The number of actuation cycles the valves are tested for is not reached during the lifetime of the evaluated system. It is possible that in individual cases components of the valve (e.g. seals) must be replaced. In this case the environmental impact is negligible compared to the impact of the whole system and below the cut-off criteria defined in EN 15804+A1.
36	The operational use of the system is an important stage mainly because of the long reference service life of 25 years. 19 710 kWh of energy (ecoinvent dataset: Electricity, low voltage {RER} market group for Cut-off, U) per functional unit is necessary to run the two pumps.
27	No operational water use is passasary for the system. This stage is considered as not relevant

B7 No operational water use is necessary for the system. This stage is considered as not relevant.

End of life stage

C1	De-construction of the system is mainly manual work. A small energy input is needed to cut the pipes. The environmental impact is negligible compared to the impact of the whole system and below the cut-off criteria defined in EN 15804+A1.
C2	Transportation to the end of life treatment facilities is carried out by truck. Distances are 600 km for recycling and 150 km for incineration.
С3	It is assumed that all metal parts are recycled and all other parts are incinerated with energy recovery. The exported energy is in the form of electricity and thermal energy. Approximately 11.5% of the net energy content of the incinerated waste is converted to electricity and 23.4% is converted to heat. Both are sold to external consumers. These values reflect the situation in Swiss municipal waste incinerators about 10 years ago, as reported in ecoinvent documentation.
C4	It is assumed that all metal parts are recycled and all other parts are incinerated with energy recovery. Therefore module C4 is not relevant.

Reference service life data

Parameter	Data									
Reference service life	25 years									
	System components are compliant with relevant international standards, e.g									
	EN (European Standards)									
	ISO (International Organization for Standardization)									
	BS (British Standard)									
		can Society for Testing and I	Materials)							
	 JIS (Japan Ind 	lustrial Standard)								
Declared product										
properties	Most relevant standards are: ISO 15493 Plastics piping systems for industrial applications Acrylonitrile-									
	ISO 15493									
	butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) Specifications for									
		pecifications for								
	ISO 16138	components and the syst		lastics						
	150 10138	Industrial valves - Diaph	ragm valves of thermop	DIASTICS						
	materials ISO 16135 Industrial valves - Ball valves of thermoplastics materials									
	150 10135									
	PVC-U characte	ristics	Value	Test standard						
	Operating temp	erature range	0 °C to + 60 °C							
	Density	H	1.38 g/cm ³	EN ISO 1183 - 1						
	Yield Stress at 2	23 °C	≥ 52 N/mm ²	EN ISO 527 - 1						
	Tensile e-modu	lus at 23 °C	≥ 2500 N/mm ²	EN ISO 527 - 1						
	Charpy notched	impact strength at 23 °C	≥ 6 kJ/m ²	EN ISO 179 - 1/1eA						
		impact strength at 0 °C	≥ 3 kJ/m ²	EN ISO 179 - 1/1eA						
Design application		tion temperature B/50 N	≥ 76°C	DIN 306						
parameters	Heat conductivit	y at 23 °C	0.15 W/m K	EN 12664						
	Water absorptio	on at 23 °C	≤ 0.1%	EN ISO 62						
	Limited oxygen	index (LOI)	42%	ISO 4589 - 1						
		ation, please refer to the pla								
		rt & services → Planning Ass	istance → Planning Fund	amentals > Industrial Piping						
	<u>Systems</u>									
	<u></u>									
		ater supply without interrup		_						
Assumed quality of work	 Flexibility of plastics pipes minimizes the risk of water hammer No corrosion and no incrustation reduces maintenance to a minimum 									
Assumed quality of work				IIIIIdiii						
	High chemical and temperature resistance									
ndoor environment	The system is ins	talled in Valencia, Spain. Sta	andard indoor condition	s apply.						
	• SDR 13.6	······								
1 197	• PN 16									
Jsage conditions		 Flow rate 0.6 m³/h 								
	The system is de-	igned to be operated with a	It ropain maintanan	ronlocomont or refurbichers at						
	-	the condition that the system	•	replacement or refurbishment.						
Maintenance	-	-	n is instatted and opera	ited according to the						
Hamee	an a aif+	en by GF Piping Systems.								

2.4 Parameters describing resource use

Parameters describing resource use, primary energy	Parameters describing resource use, primary energy			ruction s stage		Use stage			End of life			
		Total (of product stage)	Transport	Construction installation process	Use, Maintenance, Repair, Replacement, Refurbishment	Operational energy use	Operational water use	De-construction / Demolition	Transport	Waste processing	Disposal	
		A1-3	A4	A5	B1-B5	B6	B7	C1	C2	C3	C4	
Use of renewable primary energy excluding renewable primary energy resources used as raw materials		4.22E+02	3.74E+00	4.86E+00	0	3.14E+04	0	0	1.18E+00	1.15E+01	0	
Use of renewable primary energy resources used as raw materials		1.47E+01	0	1.98E-02	0	0	0	0	0	0	0	
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	orific value	4.37E+02	3.74E+00	4.88E+00	0	3.14E+04	0	0	1.18E+00	1.15E+01	0	
Use of non-renewable primary energy excluding non- renewable primary energy resources used as raw materials	MJ, net calo	3.19E+03	6.04E+02	1.02E+02	0	1.84E+05	0	0	8.88E+01	1.18E+02	0	
Use of non-renewable primaryenergy resources used as raw materials	Σ	5.17E+02	0	1.26E+00	0	0	0	0	0	0	0	
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)		3.70E+03	6.04E+02	1.03E+02	0	1.84E+05	0	0	8.88E+01	1.18E+02	0	

Pa rameters describing resou ma terials and fuels, and use	Product stage				Use stage		End of life				
		P-L Total (of product stage)	A Transport	 Construction installation process 	1 Use , Maintenance, Repair, 6 Replacement, Refurbishment	9 Operational energy use	B4 Operational water use	De-construction / Demolition	C2	2 Waste processing	Disposal
Use of secondary material*	kg	4.10E+00	0	0	0	0	0	0	0	0	0
Use of renewable secondary MJ, net calorific value fuels*		0	0	0	0	0	0	0	0	0	0
Use of non-renewable secondary fuels*	MJ, net calorific value	0	0	0	0	0	0	0	0	0	0
Net use of fresh water	m³	3.98E+00	7.44E-02	1.81E-01	0	1.29E+02	0	0	1.41E-02	2.15E-01	0

*Only for foreground process from which LCI data are made available by GF Piping Systems - the number does not include processes and materials modelled by means of background data, e.g. transportation, electricity, ancillary materials, etc.

2.5 Environmental information describing output flows

Other environmental information flows	Product stage		ruction ss stage		Use stage			End	d of life		
		Total (of product stage)	Transport	Construction installation process	Use, Maintenance, Repair, Replacement, Refurbishmen	Operational energy use	Dperational water use	De-construction / Demolition) Transport	Waste processing	Disposal
		A1-3	A4	A5	B1-B5	B6	B7	C1	C2	C3	C4
Components for re-use*	kg	0	0	0	0	0	0	0	0	0	0
Materials for recycling*	kg	9.41E-01	0	3.51E+00	0	0	0	0	0	1.47E+01	0
Materials for energy recovery*	kg	0	0	0	0	0	0	0	0	0	0
Exported energy - electricity*	MJ per energy carrier	8.12E-01	0	3.19E-01	0	0	0	0	0	5.67E+01	0
Exported energy - thermal energy*	MJ per energy carrier	1.73E+00	0	6.46E-01	0	0	0	0	0	1.15E+02	0

*Only for foreground process from which LCI data are made available by GF Piping Systems - the number does not include processes and materials modelled by means of background data, e.g. transportation, electricity, ancillary materials, etc.

Other environmental information de categories	Product Construction stage process stage				Use stage		End of life				
		 Total [of product stage] 	Transport	Construction installation process	19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Dperational energy use	B Operational water use	De-construction / Demolition	C2	8 Waste processing	lesodsi C
Hazardous waste disposed		4.79E+00	2.34E-04	2.57E-01	0	2.41E-01	0	0	7.53E-05	2.80E-04	0
Non-hazardous waste disposed	kg	9.00E+01	7.13E+00	8.31E-01	0	6.17E+02	0	0	2.68E+00	2.74E+00	0
Radioactive waste disposed		9.80E-03	4.26E-03	1.98E-04	0	1.34E+00	0	0	5.78E-04	4.32E-04	0

GF Piping Systems

Your contact

Georg Fischer Piping Systems Ltd. Ebnatstrasse 111 CH-8201 Schaffhausen Switzerland

Phone +41 (0) 52 631 11 11 www.gfps.com/sustainability sustainability.ps@georgfischer.com

