

Environmental Product Declaration

Polyethylene system

According to EN 15804+A1

Sea water cooling intake in a power plant

1. Declaration of general information

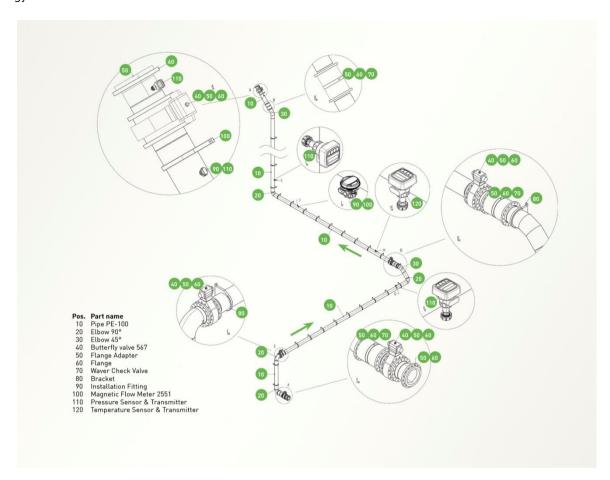
1.1 Introduction

GF Piping Systems is one of the three divisions within Georg Fischer Corporation and a leading provider of plastic and metal piping systems with global market presence. The product portfolio includes pipes, fittings, valves and the corresponding automation and jointing technology for industry, building technology as well as water and gas utilities. Georg Fischer Piping Systems proactively incorporates its environmental responsibility into its everyday business activities. Because we understand environmental awareness as one of the corporation's core values, internal structures and processes are geared towards sustainability. In this context, life cycle assessments are the correct tool to gain insight in the different life cycle phases of our systems.

This EPD is based on a detailed background report written by the Flemish Institute for technological research (Vito). The report is in line with EN 15804+A1 "Sustainability of construction works – environmental product declarations – Core rules for the product category of construction products". The data of the study complies with the quality requirements set out in EN 15804+A1

(EN 15804+A1:2013, Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products). Data regarding the production of the pipe system components is company specific and was provided by GF Piping Systems.

Declaration


Declaration owner & Program	Georg Fischer Piping
operator's name	Systems Ltd.
Validity	26.03.2020 - 25.03.2025
Declaration Number	GFPS-EPD_2005-1_5
EPD-Type	Cradle to grave
Data calculated by	Vito NV (Flemish Institute for technological research) www.vito.be
Life Cycle Inventory (LCI) source	Ecoinvent 3.5
for generic background processes	Industry data 2.0 database
Software	SimaPro 9.0.0

Georg Fischer Piping Systems Ltd.
Ebnatstrasse 111
CH-8201 Schaffhausen
+41 (0) 52 631 1111
www.gfps.com/sustainability
sustainability.ps@georgfischer.com

1.2 System

The analyzed case represents an exemplary system for the transport of sea water to a power plant where it is used for process cooling. The system is designed in the dimension d400 and installed in Jiaxing (China). The used jointing technology is butt fusion.

Materials

The material of the main pipe system components (pipes and fittings) is PE-100. The whole system consists of the materials as listed below.

Materia	l	Weight (kg)
PE-100		3 802
Plastics	(other than PE-100)	316
Steel		154
Other m	etals	29
Rubber		3
Cable (m	netal + plastics)	2 + 4
Pump	Iron	499
	Steel	234
Motor	Steel	931
	Iron	455
	Other metals	115
	Paint	8
	Resin	7
	Insulation material	6

Reference service life

25 years

Please refer to chapter 2.3 for further information on the reference service life of the system.

Functional unit (FU)

The above ground transportation of sea water to the cooling facility in a power plant, over a length of 80.2 m and a height difference of 10 m over the whole service lifetime of 25 years. The transport starts at the water surface and ends at the cooling facility.

Components of the system (number of pieces or meter)

The system mainly consists of Georg Fischer Piping Systems components. However, to complete the system also external components (Ext.) are necessary which are not produced by Georg Fischer Piping Systems. The calculation of the environmental impact of these products is based on publicly available data and assumptions.

	Product Code	Pieces or meter	Material
System components			
PE pipe, d400	193017175	80.2 m	PE-100
Bend 90°, d400	753021025	4	PE-100
Bend 45°, d400	753051025	2	PE-100
Flange adapters, d400	753800025	16	PE-100
Installation fittings, d400 – d630	753314002	3	PE-100
Backing flanges, d400	727700525	16	PPGF30
Butterfly valve type 567 (with pneumatic actuator), d400	167567052	4	PP-H (body) and others
Wafer check valve type 369, d400	Custom made item	3	PP-H (body) and others
2551 Magmeter flow sensor	159001112	2	PP (sensor body) and others
Level/pressure integral system	159001041	2	PVDF (sensor housing) and others
2350 Temperature sensor	159000920	1	PVDF (sensor housing) and others
9900 Transmitter	159001696	1	PBT (housing) and others
Cable	Ext.	120 m	Copperand others
Pump	Ext.	1	Various metals and others
Motor	Ext.	1	Various metals and others
Components for installation			
Bolts	Ext.	64	Stainless steel
Nuts	Ext.	128	Stainless steel
Washers	Ext.	128	Stainless steel
Brackets	Ext.	32	PP

1.3 Comparability

EPDs of construction products may not be comparable if they do not comply with the EN 15804+A1.

1.4 Demonstration of verification

CEN standard EN 15804 serves as the core PCR									
Independent verification of the declaration and data, according to EN ISO 14025:2010									
□ internal									
Dr. Frank Werner									
Company: Dr. Frank Werner Umwelt & Entwicklung, Zürich (Switzerland)									

2. Declaration of environmental parameters derived from LCA

2.1 Flow diagram of the processes included in the LCA

Abiotic

Photo-

2.2 Parameters describing environmental impacts

	Impact category	Global warming	Ozone depletion	Acidificatio n of soil and water	Eutro- phication	chemical ozone creation	depletion - non fossil	Abiotic depletion - fossil
				İ				
		kg CO₂ eq	kg CFC-11 eq	kg SO₂ eq	kg PO₄³- eq	kg C₂H₄eq	kg Sb eq	MJ
A1-3	Product stage	1.84E+04	3.03E-03	1.26E+02	2.41E+01	8.33E+00	3.96E-01	4.09E+05
A4	Transport to installation	6.52E+03	1.20E-03	2.42E+01	4.13E+00	1.04E+00	2.23E-03	9.43E+04
A5	Installation	2.45E+02	4.10E-06	4.50E-01	1.25E-01	5.07E-02	1.16E-04	1.31E+03
B1-5	Use, Maintenance, Repair, Replace- ment, Refurbish- ment	0	0	0	0	0	0	0
B6	Operational energy use	1.03E+07	7.47E-02	4.55E+04	4.70E+03	1.70E+03	2.00E+00	9.13E+07
B7	Operational water use	0	0	0	0	0	0	0
C1	De-construction/ Demolition	0	0	0	0	0	0	0
C2	Transport to end- of-life treatment	3.37E+02	5.49E-05	1.07E+00	1.72E-01	5.74E-02	1.62E-03	4.98E+03
C3	Waste processing	0	0	0	0	0	0	0
C4	Disposal	5.08E+02	1.08E-05	2.35E-01	1.05E-01	8.67E-02	4.93E-05	9.17E+02

^{*} Stage not relevant, ** Environmental impact below cut-off criteria. Please refer to chapter 2.3 for details.

2.3 Scenarios and additional technical information

The analyzed case represents an exemplary system for the transport of sea water to a power plant where it is used for process cooling.

Α1	The production of the plastic raw material was modeled by generic European data (source: ecoinvent) and complemented by specific data from GF Piping Systems to consider the company specific formulation of the raw material.
A2	Wherever possible, the specific transport distances were taken into account. Data from ecoinvent with the respective parameters was used to model the transportation.
A 3	The use of energy is the most important input for this process step. Pipes are extruded while fittings and valve parts are injection moulded. Each of GF Piping Systems' worldwide production sites is certified according to ISO 14001 (Environmental management systems) and to OHSAS 18001 (Occupational health and safety management systems) or is currently in the certification process. For the production of GF Piping Systems components, electricity mixes for the respective country/continent were used. The production of external products was modele using generic ecoinvent data records for the process.

Constru	action process
	The system is installed in Jiaxing (near Shanghai), China.
Α4	Pipes, bends 90° and flange adapters, brackets as well as bolts, nuts and washers are transported over a distance
	of 127 km by means of a truck directly to the installation site. Measuring instruments are transported by air freight
	(10 885 km) and truck (127 km) to the installation site. The other components are first transported by truck to
	storage: Installation fittings (150 km), backing flanges (560 km), bends 45° (130 km), butterfly valves
	(456 km), check valves (250 km), brackets (700 km). Afterwards they are transported by air (9 262 km) and truck
	(127 km) to the installation site.
	For all transportations by truck the ecoinvent data record "Transport, freight, lorry 16-32 metric ton, EURO5
	{RER} transport, freight, lorry 16-32 metric ton, EURO5 Cut-off, U'" was used. Loading capacity is 60%.
	For the installation of the whole system 72 kWh welding energy (Chinese electricity mix) is needed. Furthermore,
	specific cleaner (0.2 kg/FU) is necessary. The cleaner is transported by truck (1 027 km) and air freight (9 262 km)
Λ.E.	to the installation site.
A 5	Outputs of the complete installation of the system are PE pipe left over (5 kg/FU) and packaging waste
	(118 kg/FU) whereof 77% is cardboard. All waste is going to landfill. Transport distance to landfill is assumed to be
	200 km. Transport is carried out by truck.

Jse stage	
B1	There are no further environmental impacts arising from the use of the system. This stage is considered as not relevant.
32-B5	The system is designed to be operated without repair, maintenance, replacement or refurbishment during the reference service life. This is subject to the condition that the system is operated according to the specifications given by GF Piping Systems. The lifetime of a valve is mainly influenced by the actuation cycles. The number of actuation cycles the valves are tested for is not reached during the life time of the evaluated system. It is possible that in individual cases components of the valve (e.g. seals) must be replaced. In this case the environmental impact is negligible compared to the impact of the whole system and below the cut-off criteria defined in EN 15804+A1.
36	The operational energy use of the system is an important stage because of the long reference service life of 25 years. 10 082 200 kWh of energy (ecoinvent dataset: Electricity, medium voltage {CN} market group for Cut-off, U) for the pump during the use stage is necessary per functional unit.
37	No operational water use is necessary for the system. This stage is considered as not relevant.

End of l	ife stage
C1	A small energy input is needed to cut the pipe into smaller pieces. The environmental impact is negligible compared to the impact of the whole system and below the cut-off criteria defined in EN 15804+A1.
C2	Transportation to the end of life treatment facilities is carried out by truck. Distances to recycling and landfill are 200 km.
C3	All metal parts of the system – in total 2 419 kg - are recycled.
C4	All other parts – in total 4 146 kg - are going to landfill.

Reference service life data

^D arameter	Data								
Reference service life	25 years								
	System components are compliant with relevant international standards, e.g.								
	EN (European Standards)								
	ISO (International Organization for Standardization)								
	BS (British Standard)								
	 ASTM (American Society for Testing and 	l Materials)							
	 JIS (Japan Industrial Standard) 								
Declared product									
properties	Most relevant standards are:		(55)						
•	ISO 15494 Plastics piping systems f								
	Polyethylene (PE) and Po		ecifications for						
	components and the syst ISO 16136 Industrial valves - Butter		la akina mankamiala						
	ISO 16137 Industrial valves - Check	·							
	EN 12201 Plastics piping systems f		for drainage and						
	sewerage under pressure	e - Polyethylene (PE)							
	PE-100 characteristics	Value	Test standard						
	Operating temperature range	-50 °C to + 60 °C							
	UV resistant	yes							
	Density	0.95 g/cm ³	EN ISO 1183 - 1						
	Yield stress at 23 °C	25 N/mm ²	EN ISO 527 - 1						
	Tensile e-modulus at 23 °C	900 N/mm ²	EN ISO 527 - 1						
	Charpy notched impact strength at 23 °C	83 kJ/m ²	EN ISO 179 - 1/1eA						
Design application	Charpy notched impact strength at -40 °C	13 kJ/m ²	EN ISO 179 – 1/1eA						
parameters	Ball indentation hardness (132 N)	37 MPa	EN ISO 2039 - 1						
	Crystallite melting point	130 °C	DIN 51007						
	Heat conductivity at 23 °C	0.38 W/m K	EN 12664						
	Water absorption at 23 °C	0.01-0.04%	EN ISO 62						
	<u> </u>								
	For more information, please refer to the pla	anning fundamentals	which are available at:						
	gfps.com > support & services > Planning Ass	sistance > Planning Fu	undamentals > Industrial Pipino						
	<u>Systems</u>								
	 Constant water supply without interrupt 	- '							
Assumed quality of work	 Leakproof system reduces water losses 								
toodiffed quality of work	 Flexibility of plastics pipes minimizes the risk of water hammer 								
	No corrosion and no incrustation reduces maintenance to a minimum								
	The system is installed in Jiaxing (near Shan	nghai) where the follow	ving outdoor parameters apply						
	Average air temperature: 17°C								
Outdoor environment	Average water temperature: 17°C								
	Average hours of sunshine/day: 5h								
	• SDR 11								
	- JUI\ I I								
	 PN 16 								
Jsage conditions	 PN 16 Flow rate 2.5 m/s 								
Jsage conditions	PN 16Flow rate 2.5 m/s								
Jsage conditions	Flow rate 2.5 m/s	but repair. maintenan	ce, replacement or						
Jsage conditions Maintenance		-	•						

2.4 Parameters describing resource use

Parameters describing resource use, primary energy	rameters describing resource use, primary energy			uction s stage		Use stage	End of life				
		Total (of product stage)	Transport	Construction installation process	Use, Maintenance, Repair, Replacement, Refurbishment	Operational energy use	Operational water use	De-construction / Demolition	Transport	Waste processing	Disposal
		A1-3	Α4	A5	B1-B5	В6	В7	C1	C2	C3	C4
Use of renewable primary energy excluding renewable primary energy resources used as raw materials		2.77E+04	5.12E+02	8.29E+01	0	9.13E+06	0	0	6.35E+01	0	3.04E+01
Use of renewable primary energy resources used as raw materials		3.55E+02	0	5.84E-01	0	0	0	0	0	0	0
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	ific value	2.81E+04	5.12E+02	8.35E+01	0	9.13E+06	0	0	6.35E+01	0	3.04E+01
Use of non-renewable primary energy excluding non- renewable primary energy resources used as raw materials	MJ, net calo	2.64E+05	9.56E+04	1.11E+03	0	9.44E+07	0	0	5.09E+03	0	9.87E+02
Use of non-renewable primary energy resources used as raw materials	Σ	1.72E+05	0	2.59E+02	0	0	0	0	0	0	0
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)		4.36E+05	9.56E+04	1.36E+03	0	9.44E+07	0	0	5.09E+03	0	9.87E+02

Parameters describing resoum a terials and fuels, and use	Product stage		Construction process stage		Use stage			End of life			
		7-13 (of product stage)	7 Transport	Construction installation process	Use , Maintenance, Repair, Gental Replacement, Refurbishment	ه Operational energy use	B4 Operational water use	De-construction / Demolition	2 Transport	Waste processing	nesodsiQ C4
Use of secondary material*	kg	1.37E+03	0	0	0	0	0	0	0	0	0
Use of renewable secondary fuels*	MJ, net calorific value	0	0	0	0	0	0	0	0	0	0
Use of non-renewable secondary fuels*	MJ, net calorific value	0	0	0	0	0	0	0	0	0	0
Net use of fresh water	m³	2.74E+02	1.11E+01	4.14E-01	0	1.44E+04	0	0	8.08E-01	0	1.14E+00

^{*}Only for foreground process from which LCI data are made available by GF Piping Systems - the number does not include processes and materials modelled by means of background data, e.g. transportation, electricity, ancillary materials, etc.

2.5 Environmental information describing output flows

Other environmental information describing output flows		Product	Const	ruction		Use stage	End of life				
		stage	process stage								
		Total (of product stage)	Transport	Construction installation process	Use, Maintenance, Repair, Replacement, Refurbishment	Operational energy use	Operational water use	De-construction / Demolition	Transport	Waste processing	Disposal
		A1-3	A 4	A5	B1-B5	В6	B7	C1	C2	C3	C4
Components for re-use*	kg	0	0	0	0	0	0	0	0	0	0
Materials for recycling*	kg	4.15E+01	0	0	0	0	0	0	0	0	2.42E+03
Materials for energy recovery*	kg	0	0	0	0	0	0	0	0	0	0
Exported energy - electricity*	MJ per energy carrier	3.67E-01	0	0	0	0	0	0	0	0	0
Exported energy - thermal energy*	MJ per energy carrier	7.75E-01	0	0	0	0	0	0	0	0	0

^{*}Only for foreground process from which LCI data are made available by GF Piping Systems - the number does not include processes and materials modelled by means of background data, e.g. transportation, electricity, ancillary materials, etc.

Other environmental information describing waste categories		Product stage			Use stage			End of life			
		Total (of product stage)	Transport	Construction installation process	Use , Maintenance, Repair, Replacement, Refurbishment	Operational energy use	Operational water use	De-construction/ Demolition	Transport	Waste processing	Disposal
		A1-3	A4	A5	B1-B5	B6	B7	C1	C2	C3	C4
Hazardous waste disposed	kg	4.84E-01	3.22E-02	1.55E-03	0	1.58E+02	0	0	4.01E-03	0	4.17E-04
Non-hazardous waste disposed		7.61E+03	4.30E+02	1.36E+02	0	8.87E+05	0	0	1.77E+02	0	4.15E+03
Radioactive waste disposed		4.66E-01	6.81E-01	2.35E-03	0	5.49E+01	0	0	3.34E-02	0	6.57E-03

+GF+

8

GF Piping Systems

Your contact

Georg Fischer Piping Systems Ltd. Ebnatstrasse 111 CH-8201 Schaffhausen Switzerland

Phone +41 (0) 52 631 11 11 www.gfps.com/sustainability sustainability.ps@georgfischer.com

