JRG

Catalogue des produits Documentation technique

Régulateur de circulation

Contenu

Ρ	résentation des produits	2
•	Caractéristiques des régulateurs	3
•	Spécificités d'un système de circulation	5
•	Confort dans les systèmes de circulation	6
•	Hygiène de l'eau potable	7
D	ocumentation technique	11
JF	RGUTHERM	11
•	Structure/Indications technique	12
•	Fonction/Position de montage	13
•	Avantages	13
•	Perte de pression	14
•	Exemple d'installation	15
•	Réglage/Plage de réglage	16
•	Produits	17
JF	RGUTHERM 2T	19
•	Structure/Indications technique	20
•	Fonction/Position de montage	21
•	Avantages	21
•	Charactéristiques de régulation	22
•	Perte de pression	23
•	Réglage/Plage de réglage	25
•	Produits	27
Ну	ycleen Automation System	31
•	Fonction/Position de montage	32
•	Avantages	33
•	Applications	35
•	Schéma d'installation	36
•	Le Master	40
•	Protocoles	42
•	La vanne	43
•	Champs d'application	44
•	Perte de pression	47
•	Produits	48
Α	nnexe	52
•	Calculs de circulation	52
•	Calculs / Exemples	55
•	Graphiques et tableaux (valeurs zêta)	69
•	Les pompes des eaux usées	109

Vue d'ensemble des produits

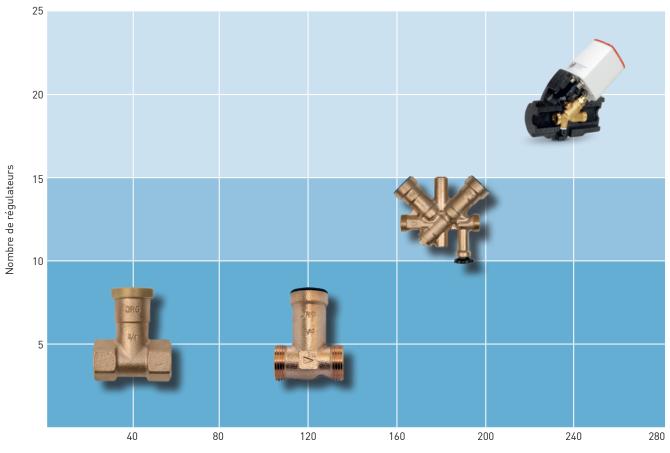
Vanne de régulation mécanique

Manchon de réglage 6310

Réglage unique est constant du débit par le réglage de la section de passage dans l'installation.

Vannes de régulation thermostatiques

JRGUTHERM 2T 6325



Hycleen Automation System

Préréglage unique de la température par un senseur qui règle le débit nécessaire correspondant.

Choix du régulateur

Le choix du régulateur correct pour une installation dépend d>un certain nombre de facteurs. Les points les plus importants sont le nombre de régulateurs et la différence de pression entre le débit de circulation le plus favorable et le moins favorable. Le graphique ci-dessous peut vous donner une première indication sur notre gamme de régulateurs.

Différence de pression des tronçons

Caractéristiques des régulateurs

	Manchon de réglage	JRGUTHERM	JRGUTHERM 2T	Hycleen Automation System
	DRG 2/4			
Domaine d'application	Immeubles d'habitation • Petites installations jusqu'à 10 régulateurs.	Immeubles d'habitation • Petites installations jusqu'à 10 régulateurs.	 Petites et grandes installations jusqu'à 15 régulateurs. Désinfection thermique. 	 Grandes installations. Désinfection thermique. Surveillance du système et protocoles.
Calculation	Pour une régulation correcte, un calcul détaillé des pertes de chaleur et de charge dans le système est nécessaire.	lcul détaillé des pertes petites installations. aleur et de charge dans • Calcul détaillé des pe		Calcul détaillé des pertes de chaleur et de charge du système. Dans le cas des grandes installations, prendre en compte les débits de fuites des régulateurs, la détermination détaillée des pertes thermiques dans les différentes parties du bâtiment et la prise en considération du traitement d'eau (température, temps et volume).
Surveillance et protocole	 Manuel Capteurs de température supplémentaires néces- saires! 	Manuel • Capteurs de température supplémentaires nécessaires!	Manuel • Capteurs de température supplémentaires nécessaires!	Système
Equilibrage hydraulique	Réglage de l'équilibre hydraulique fixe obtenu par réglage des débits.	Réglage thermique automa- tique de l'équilibre hydrau- lique.	Réglage thermique automa- tique de l'équilibre hydraulique.	Réglage thermique automatique de l'équilibre hydraulique.
Désinfection thermique	Seulement possible avec un contournement du régulateur.	Seulement possible avec un contournement du régulateur.	Possible • Réglage de la température de désinfection en fonction de l'objet.	Possible • Réglage de la température de désinfection en fonction de l'objet.
Début de la désinfection thermique	Seulement possible avec un contournement du régulateur.	Seulement possible avec un contournement du régulateur.	Dès que la température préréglée est atteinte.	Possible Dès que la température préréglée est atteinte. A un moment défini. Un régulateur après les autres ou tous ensemble.
Volume d'eau par désinfection	Dépend de la commande externe.	Dépend de la commande externe.	Indéterminé! Aussi longtemps que la haute température est maintenue, la désinfection se poursuit.	Peut être défini! Dès le début de la désinfection thermique le volume d'eau chaude est peut être également approximative-ment déterminé.

Caractéristiques de soupape

	Manchon de réglage	JRGUTHERM	JRGUTHERM 2T	Hycleen Automation System
	DRG 3/E			
Retour d'informations	Possible seulement avec une solution externe.	Possible seulement avec une solution externe.	Possible seulement avec une solution externe.	Historique de température de chaque régulateur. Historique de température de désinfection de chaque régulateur. Annonce de défaillance du système et de chaque régulateur. Température maximale atteinte par chaque régulateur. Toutes les informations avec la date et l'heure. Dès le Master 2, protocole des données avec programme DATASAVE intégré.
Coûts	Très avantageux.	Avantageux.	Moyen.	Cher. (Significativement moins cher qu'un système de contrôle du bâtiment).
Difficulté de réglage	Difficile. Plusieurs post réglage éventuellement nécessaires.	Simple.	Simple.	Très simple.

Spécificités d'un système de circulation

Les deux principaux arguments pour la création d'une installation de circulation d'eau chaude sont les exigences de confort de l'utilisateur et les exigences d'hygiène de l'eau potable.

+ Confort

- Maintien de la température du système.
- Temps de soutirage minimum.
- Diminution des pertes de chaleur.
- Répondre aux exigences souvent contradictoires du confort et de l'efficacité énergétique.

⁺ Hygiène

- Maintien de la température du système.
- L'eau en mouvement diminue la formation de micro-organismes.
- Dans les systèmes avec circulation, il y a habituellement la possibilité de procéder à une désinfection thermique.

5

Confort dans le système de circulation

Demande des consommateurs

Après avoir ouvert un robinet, l'eau chaude devrait arriver rapidement pour maintenir les pertes d'eau sortie aussi faibles que possible. Le poste de puisage doit être à la disposition du consommateur à tout moment sans temps d'attente pour l'eau chaude. Déjà dans de petits objets, à partir de 3 appartements, ce confort ne peut plus être garanti sans la création d'un système de distribution d'eau chaude. De nos jours, il existe deux options principales pour une gestion confortable de la température:

- Ruban chauffant électrique
- Système de circulation

Temps de soutirage

Afin de maintenir la perte d'eau dans un cadre économiquement viable et en même temps de combler les besoins de confort du consommateur, les exigences suivantes s'appliquent aux temps de soutirage:

Recommandation pour la mesure des temps de soutirage

- Aucune eau chaude ne peut être soutirée au minimum 3 heures avant la mesure.
- Les contrôleurs de débit doivent être remplacés par une buse standard.
- La robinetterie de prélèvement doit être placée dans la position la plus chaude.
- La robinetterie de prélèvement doit être entièrement ouverte.
- Le temps de soutirage est compté jusqu'à une température de 40°C au point de soutirage. Cette température signale le début de l'utilité de l'eau chaude.
- La mesure se poursuivra jusqu'à ce que la valeur cesse d'augmenter en une minute.
- Les excès de temps peuvent également être causés par une trop faible pression d'écoulement ou par des limiteurs de débit montés par l'utilisateur.
- Lorsque des mélangeurs économiseurs d'énergie ou des limiteurs de débit sont utilisés, les exigences de temps d'émission ne doivent plus obligatoirement être remplies.

Appareil sanitaire	Temps de soutirage du système de distribution (SIA 385/1, 2013)				
	Sans maintien de tem- pérature (sans circulation ou ruban chauffant)	Avec maintien de tem- pérature (avec circulation ou ruban chauffant)			
Lavabo, lavabo rigole, bidet, douche de coiffeur, douche, table de rinçage (cuisine), évier, bai- gnoire	15 s	10 s			

Hygiène de l'eau potable

Généralités

La technique du bâtiment est de plus en plus confrontée aux problèmes liés à l'hygiène de l'eau potable. La contamination de l'eau potable avec des germes pathogènes, tels que légionnelles et Pseudomonas, est un grand risque pour la santé. La réhabilitation des systèmes d'eau potable pose un défi majeur pour les personnes responsables.

Genres de désinfections

Si un système d'eau potable est contaminé par des germes pathogènes, en dehors d'une rénovation totale, c'est souvent un combat par désinfection. Cela réduit la croissance des micro-organismes porteurs de maladies dans la distribution de l'eau potable. Les méthodes de désinfection les plus importantes sont aujourd'hui des mesures physiques ou chimiques.

Méthodes de désinfection physiques:

- Désinfection thermique
- Désinfection UV

Avant de planifier et d'exécuter une désinfection chimique, diverses précautions sont à prendre. Non seulement la qualité de l'eau, mais aussi le système d'installation, le matériau utilisé (par exemple la conduite et son matériel d'étanchéité) ainsi que les raccords et leur isolation jouent un rôle important.

Pour procéder à une désinfection, il faut également tenir compte du comportement de l'utilisateur ou du groupe d'usagers (foyers de personnes âgées, maisons d'invalides, hôpitaux psychiatriques, centres de réadaptation, foyers pour enfants, etc.).

Tous les types de désinfection ont une chose en commun:

- Tout type de désinfection coûte de l'argent.
- Aucune désinfection ne garantit une protection de 100% (diminution des symptômes uniquement).
- Crée une charge supplémentaire sur les composants installés sur la distribution d'eau potable.
- Prendre garde aux systèmes avantageux.

Mesures d'assainissement

Avant qu'une décision ne soit prise concernant la désinfection, il est essentiel d'effectuer une analyse complète des risques, liée à l'objet.

Analyse sur site:

- Evaluation de l'objet avec des personnes responsables (par ex. planificateurs, etc.)
- Analyse de l'eau potable.

Inclusion des paramètres tels que:

- Tracé des conduites (zones mortes)
- Système de circulation (températures)
- Dimension nominales des tubes
- Matériaux de tuyauterie
- Robinetteries
- Matériaux isolants et épaisseurs d'isolation
- Qualité de l'eau potable

Mesures d'exploitation:

- Contrôle de température de l'eau chaude et froide par ex. chauffe-eau, stockage technique.
- Entretien de la robinetterie et des systèmes p. ex. filtres, appareils de traitement de l'eau, etc
- Régulation de la technique de fonctionnement par ex. durée de marche de la pompe de circulation

Mesures de conception:

- Adapter les volumes de stockage d'eau chaude
- Supprimer les zones de stagnation (conduites mortes)
- Adapter le dimensionnement des conduites
- Améliorer l'isolation des installations d'eau froide et chaude
- Remplacer l'alimentation des points de soutirage éloignés et rarement utilisés par des chauffe-eau individuels.

Mesures techniques opérationnelles:

- Rincer à tous les points de soutirage
- Désinfection physique ou chimique

Surveillance de la température et désinfection thermique

Le régulateur de circulation JRG LegioTherm 2T et JRGUTHERM 2T permet deux équilibrages de température (fonctionnement normal ou décontamination thermique). Le LegioTherm JRG 2T répond à la feuille de calcul DVGW W554. En principe, il faut préciser si la désinfection thermique est effectuée de manière cohérente ou doit être effectuée conformément à la règle des 3 litres. Malgré cela, la désinfection thermique exige que les conduites soient bien rincées à l'eau chaude. Si les conduites mortes ne sont pas séparées de l'installation, ou points de soutirage rarement utilisés ne sont pas rincés régulièrement, une nouvelle infestation peut se produire immédiatement.

Lors de la planification (nouvelle construction ou rénovation), les points suivants doivent être pris en compte afin d'assurer un fonction-nement correct de la désinfection thermique.

Matériaux d'installation:

- Matériau de conduction par exemple tuyaux en acier galvanisé maximum 60°C (risque de corrosion).
- Matériau d'étanchéité résistant à la température, tuyauteries de raccordement d'appareils, etc.
- Matériaux de la robinetterie et leur charge thermique et physique admise.

Isolation:

- Détermination des matériaux et des épaisseurs d'isolation.
- Les distributions d'eau chaude et d'eau froide doivent être isolées.

Circulation:

- Conception de la pompe de circulation de (performance).
- Pompe de circulation en fonctionnement continu (recommandé).

Traitement de l'eau chaude:

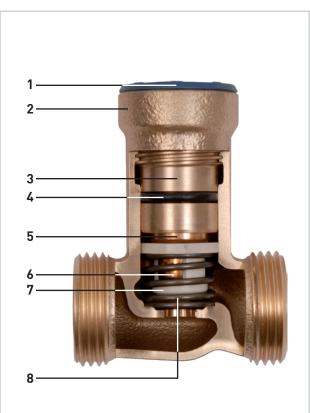
- Conception du chauffe-eau (selon les règles de la technique généralement acceptées)
- Prise en compte du volume d'eau chaude utilisé pendant une désinfection/rinçage thermique
- Tenir compte des dépôts de calcaire à haute température, par exemple, par l'installation d'un dispositif de protection contre le calcaire JRG Coral force.

Température en service normal:

- Température de sortie du chauffe-eau > 60°C
- Température du retour de circulation > 55°C
- Différence de température aller/retour de la circulation
 - Petites et moyennes installations 1-3 K grosses installations 3-5 K
- Chauffage de l'intégralité du contenu de stockage une fois par jour pendant 1 heure à > 60°C

Température lors de la désinfection thermique:

- Système d'installation complet (stockage et conduites de circulation d'eau chaude) > 70°C
- Dans le cas d'un rinçage, chaque point de soutirage doit être rincé avec un minimum de 70°C et resté ouvert pendant au moins 3 minutes.
- Lors de la désinfection thermique, aucune protection anti-échaudage n'est donnée par le système JRG LegioTherm.



JRGUTHERM

Régulateur de circulation thermostatique avec raccords d'arrêt

Construction

- 1 Baque graduée
- 2 Corps de bronze
- 3 Broche de ressort en laiton
- 4 Joint torique en EPDM
- 5 Thermostat
- 6 Ressort de compensation de course en acier au chromé nickelé
- 7 Corps de régulateur en POM
- 8 Ressort de travail

Indications technique

- Même pour des régulateurs de circulation autorégulateurs comme le JRGUTHERM, une conception simplifiée de l'installation est nécessaire.
- Ecart de température recommandé du chauffe-eau JRGUTHERM: 2–5 K.
- Le débit de l'ensemble de l'installation doit être déterminé pour un dimensionnement correct de la pompe. La hauteur de refoulement se calcule à partir de la perte de pression de la colonne la plus défavorable (écoulement). La perte de pression du JRGUTHERM dans cette colonne est déterminée sur la ligne kymax des diagrammes. Le débit des pompestrop puissantes doit être limité sur la pompe. La limitation de la pompe ne doit pas être assurée par le JRGUTHERM (différence de pression max. 0,4 bar). Les régulateurs des autres colonnes doivent être choisis de manière à ce que le point d'intersection de débit et de la perte de pression nécessaire se trouve dans la zone de dimensionnement.
- Avec une conception judicieuse, on peut renoncer à un régulateur JRGUTHERM dans la colonne défavorable ou le remplacer par un manchon de réglage p.ex. JRG Code 6310-6317.
- Un JRGUTHERM doit être monté sur toutes les sorties de circulation.
- S'il y a un danger que le régulateur JRGUTHERM subisse un débit en sens inverse, il convient de monter des soupapesde retenue adaptées. Nous recommandons le montage de raccords d'arrêt, JRG Code 8208.
- Pour tout renseignement technique et d'utilisation, vous voudrez bien vous adresser à nos conseillers techniques ou à notre service après-vente.

Function/Position de montage

Fonction

Le régulateur de circulation JRGUTHERM règle le débit en surveillant en permanence la température de l'eau au moyen d'un thermostat. L'équilibrage hydraulique se fait ainsi automatiquement. En utilisation les raccords de passage correspondants, on peut inclure des soupapes de retenue et des dispositifs d'arrêt.

Matières

Toutes les pièces en contact avec l'eau sont en bronze, cuivre, acier au chrome ou en matière synthétique de première qualité.

Position de montage

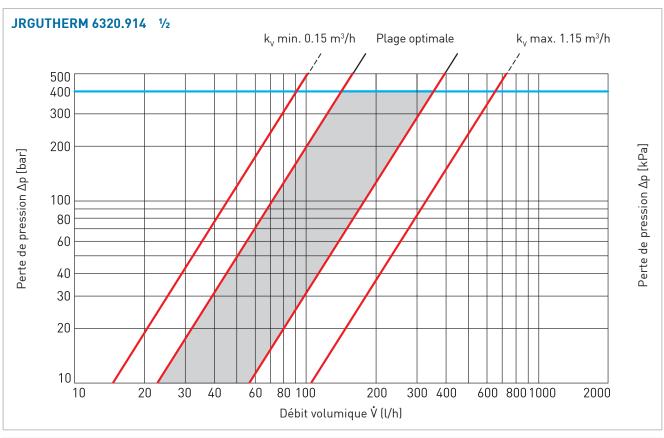
Le régulateur de circulation JRGUTHERM peut être monté en toute position. Pour faciliter les travaux de révision, nous recommandons l'installation en amont et en aval du régulateur de circulation des raccords d'arrêt JRG Code 8339.

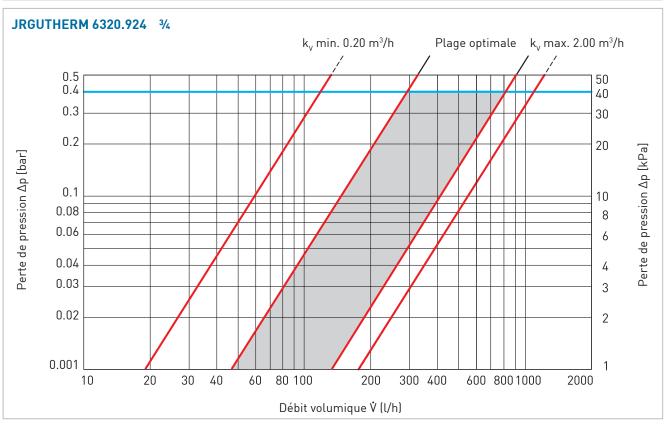
Domaine d'utilisation

Plage de réglage	36-63°C
Charge de température max.	70°C
Pression de service max.	PN 10
Différence de pression	0,4 bar

Le régulateur de circulation JRGUTHERM est protégé contre le surtempérature.

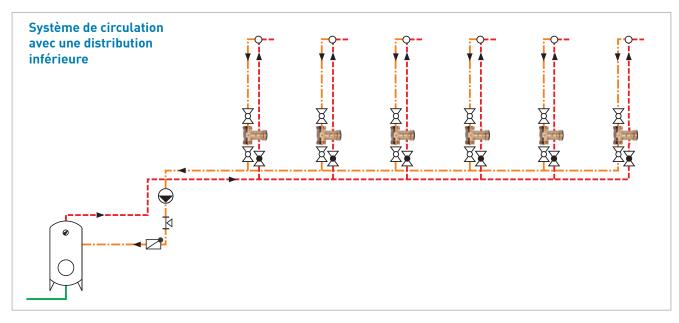
Le régulateur de circulation JRGUTHERM est puorvu d'une dérivation pour la desinfection thermique.

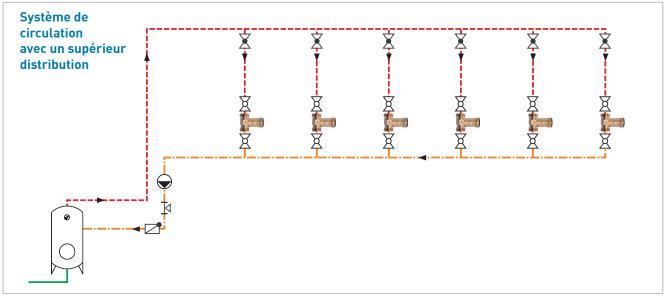

Le régulateur de circulation JRGUTHERM ne convient pas à des circulations par gravité.


Sous réserve de modifications techniques pouvant intervenir à tout moment.

Les avantages

- · Simplifie le calcul de la circulation
- Pas de calcul de préréglages
- Fonctionnement simple du régulateur
- Aucun entretien
- Régulation automatique du débit (équlilibrage hydraulique)
- Economie d'énergie
- Phase de réchauffage plus courte après un abaissement de température rature


Perte de pression



— Différence de pression max. admissible 40 kPa (0.4 bar)

Exemple d'installation

SIA	Texte	JRG Code
_	TWK - Eau froide - WKR	
	TWW – Eau chaude – WWV	
	TWZ – Circulation WW – WWR	
\bowtie	Robinet d'arrêt	5200-5234
\bowtie	Robinet à bille	8339
	Clapet de retenue	1682
M	Organe de régulation*	6310
	JRGUTHERM Rég. de circulation	6320+8339
	Pompe	

^{*} Seulement si la pompe ne peut pas être réglée.

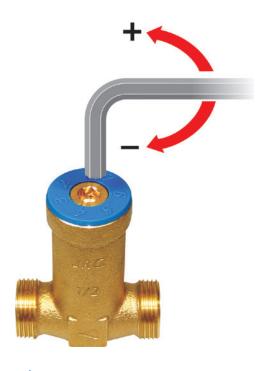
Réglage/plages de réglage

Ajustage du régulateur de circulation

Tous les régulateurs de circulation montés dans une installation doivent être réglés à la même valeur. Un réglage continu est possible. Les valeurs de réglage figurent dans le tableau. L'alignement des conduites de circulation se fait automatiquement.

Emballage de transport

L'emballage de transport du régulateur de circulations sert d'isolation thermique après le montage et l'ajustage.

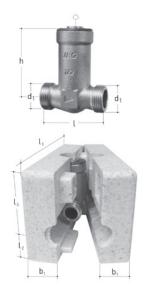


Réglage du régulateur de circulation

Toute modification apportée au réglage d'usine s'effectu sous l'entière responsabilité de l'exécutant.

Le réglage d'usine du régulateur de circulation JRGUTHERM peut être modifié comme suit: insérer la clé coudée six pans dans l'empreinte six pans.

La température est corrigée vers le bas en tournant la clé dans le sens horaire et vers le haut en tournant dans le sens horaire inverse.


Réglage

Valeur d'échelle JRGUTHERM	Consigne circulation
1	36°C
2	41°C
3	45°C
4	49°C
5	53°C
6 (réglage d'usine)	57°C
7	63°C

Maintenance

- Le régulateur de circulation JRGUTHERM ne nécessite aucune maintenance.
- Les instructions de montage et d'utilisation sont à remettre au maître de l'oeuvre à la réception de l'installation.

JRGUTHERM/Raccords

Régulateur de circulation JRGUTHERM, PN 10

• Raccord: filetage mâle

Matériel: bronze

• Réglage d'usine: 57°C (réglable 36 - 63°C)

GN	DN	JRG	GF	poids	d1 G	h			l1	12	13	b1
(inch)	(mm)	Code	Code	(kg)	(inch)	(mm)	(mm)		(mm)	(mm)	(mm)	(mm)
1/2	15	6320.914	350 831 401	0,500	3/4	64	60	8	194	38	70	37
3/4	20	6320.924	350 831 501	0,519	1	64	60	8	194	38	70	37

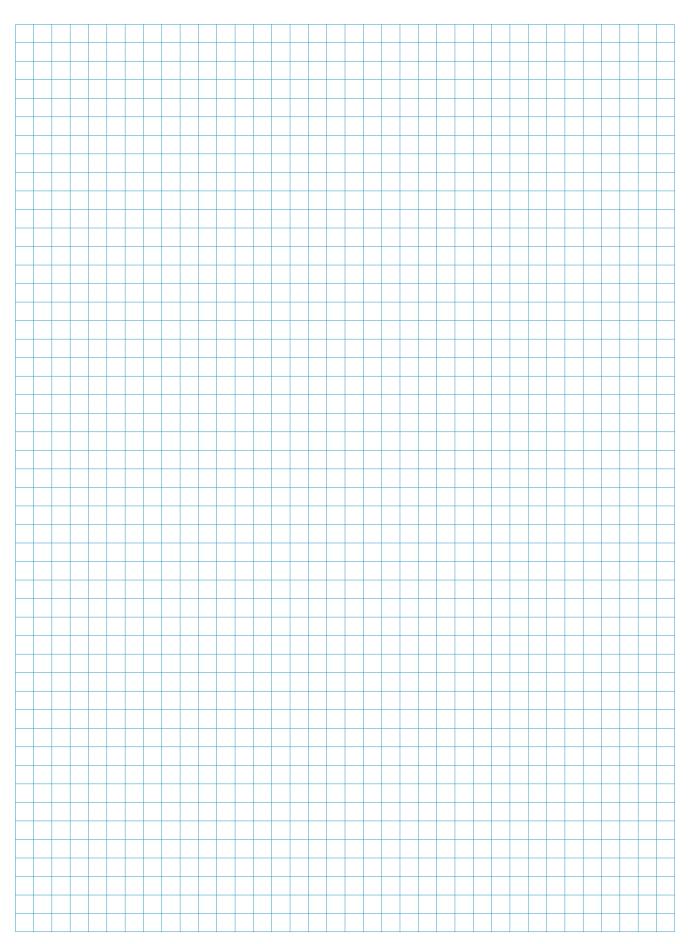
Raccord, PN 10

Description: pour 3600, 6320, 6325
Température: max. 90°C

• Raccord: filetage intérieur

• Consiste en: robinet d'arrêt à bille, écrou libre

	GN	DN	JRG	GF	poids	d1 Rp	d2 G	1	\bigcirc 1	○2	⊘3	Z
(i	nch)	(mm)	Code	Code	(kg)	(inch)	(inch)	(mm)				(mm)
	1/2	15	8339.240	350 887 710	0,170	1/2	3/4	55	30	27	6	43
	3/4	20	8339.320	350 887 911	0,260	3/4	1	55	37	32	6	47


Raccord avec soupape de retenue

• Matière: Laiton, plastique, EPDM

• Raccord: filetage mâle

GI	N E	DN	JRG	GF	poids	d1R	d2 G	1	l1	l2	Z	\bigcirc 1	○2
(incl	n) (m	nm)	Code	Code	(kg)	(inch)	(inch)	(mm)	(mm)	(mm)	(mm)		
1	/2	15	8208.240	351 055 901	0,090	1/2	3/4	40	34	6	19	30	19
3	/4	20	8208.320	351 056 001	0,150	3/4	1	44	37	7	20	37	24

Notes

JRGUTHERM 2T

Régulateur de circulation thermostatique avec robinetterie d'arrêt

Structure

T₁ T₂ 1 2

- T₁ Vanne, eau chaude
- T_a Vanne, désinfection
- 1 Raccord primaire
- 2 Raccord secondaire
- 3 Raccord pour thermomètre/ sonde de température PT 1000
- 4 Raccord pour vanne de vidange/ de prélèvement d'échantillon
- 5 Bouchon vers réglage débit de 'fuite'
- 6 Robinet d'arrêt

Indications technique

- Même pour les régulateurs de circulation automatiques comme le JRGUTHERM 2T, il est possible de simplifier le dimensionnement de l'installation.
- La différence de température recommandée entre le chauffe-eau et le JRGUTHERM 2T est de 2-5 K.
- Pour choisir la pompe de circulation adaptée, il faut calculer le débit de l'ensemble de l'installation. La perte de pression du JRGUTHERM 2T correspond à la ligne kVmax du schéma. Les régulateurs sur les boucles de circulation doivent être choisis de sorte que le point d'intersection du débit et de la chute de pression nécessaire se situent à l'intérieur de la zone d'utilisation recommandée.
- Il faut installer un JRGUTHERM 2T, sur chaque bouche de circulation.
- Si le régulateur JRGUTHERM 2T risque d'être traversé à contre-courant, il faut éviter ce danger en installant des vannes anti-retour adaptées. Nous recommandons de monter des raccords équipés de vannes antiretour, Code JRG 8208.
- Pour toutes questions et les renseignements technique concernant les diverses applications, adressez-vous à notre conseiller technique de vente ou au service client.

Fonction/Position de montage

Fonction

Le régulateur de circulation JRGUTHERM 2T régule les débits volumétriques de l'eau grâce à 2 thermostats en service normal et en service de désinfection. L'équilibrage hydraulique est réalisé automatiquement par le biais de la régulation thermique.

Matériaux employés

Toutes les pièces en contact avec l'eau sont en bronze, acier inox et en matières synthétiques nobles, les joints d'étanchéité sont en EPDM.

Montage/Position de montage

Le régulateur de circulation JRGUTHERM 2T peut être monté dans n'importe quelle position. La pose de raccords de transition adaptés permet de monter directement

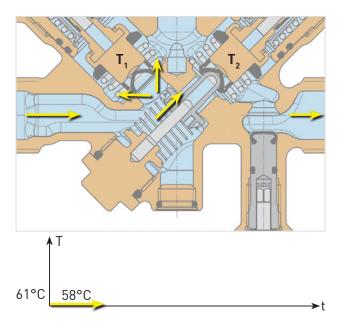
le clopet anti-retour et le système de blocage. Pour la révision, nous recommandons de monter une vanne d'arrêt en amont et en aval du régulateur de circulation, JRG Code 8339.

Domaine d'utilisation

Le JRGUTHERM 2T est un régulateur de circulation thermostatique pour l'eau potable chauffée qui régule la circulation de l'eau en service normal, ainsi qu'en mode de désinfection thermique.

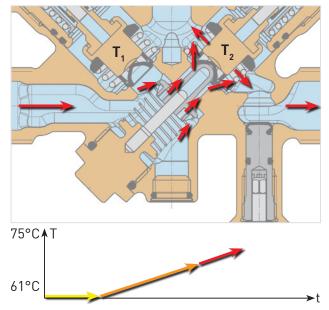
Plage de réglage T1	35-60°C
(température de l'eau chaude) 35-60°C	Skala 0-5 (≈70-75°C)
Plage de réglage T2	90°C
(température de désinfection)	PN 10
graduat. 0-5	0,4 bar
(≈70-75°C)	
Température maximale tolérée	90°C
Pression de service maximale PN	10
Pression différentielle maximale 0,4 bar)	40 kPa

Le régulateur de circulation JRGUTHERM 2T est protégé contre toute hausse excessive de la température.

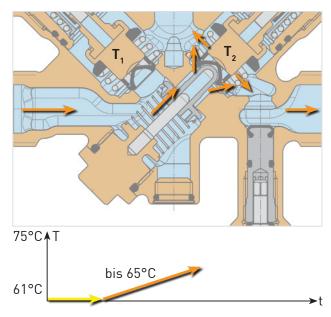

Le régulateur de circulation JRGUTHERM 2T ne doit pas être utilisé sur les circuits fonctionnant par gravitation.

Sous réserve de modifications techniques pouvant intervenir à tout moment.

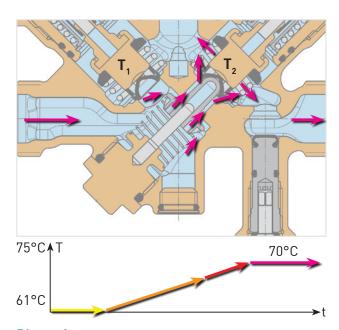
Avantages


- Deux températures, deux thermostats
- Équilibrage hydraulique automatique, régulé thermiquement
- Économie d'énergie avec un équilibrage précis
- · Commande par des vannes à siège
- Grande plage de réglage de la température
- Sans énergie extérieure nécessaire

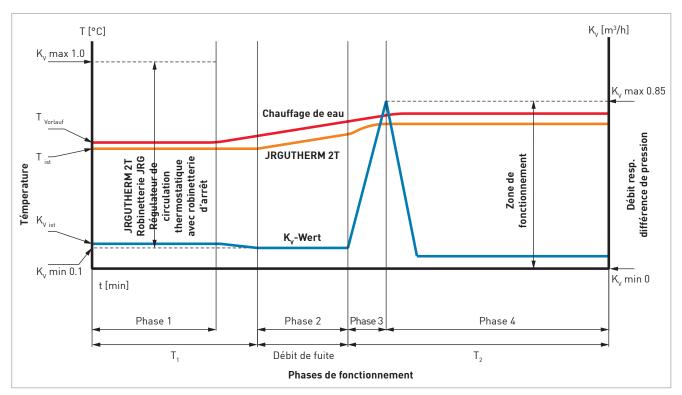
Caractéristiques de régulation JRGUTHERM 2T


Phase 1

- La température de l'eau chaude est régulée.
- Le thermostat T1 régule la température correspondante avec un réglage d'usine de 58°C.


Phase 3

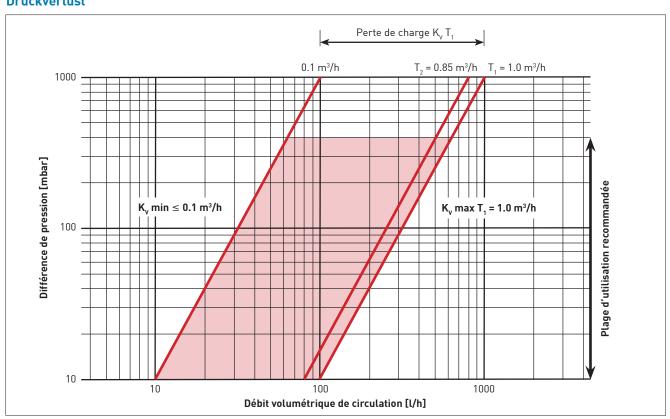
 Avec le réglage d'usine, le changement est amorcé à 66°C. La vanne se déplace brièvement à la valeur KV maximale T2 la désinfection commence et la température correspondante de 70°C est réglée.


Phase 2

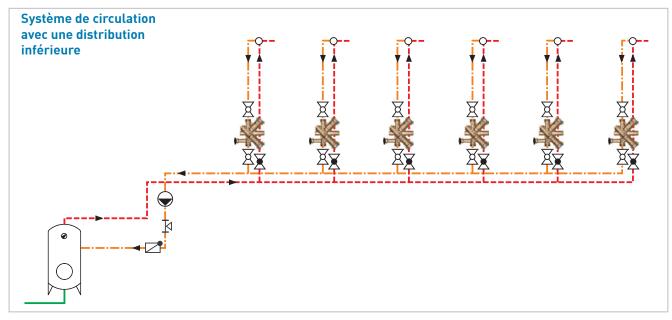
• L'augmentation de température commande au JRGUTHERM 2T la désinfection thermique.

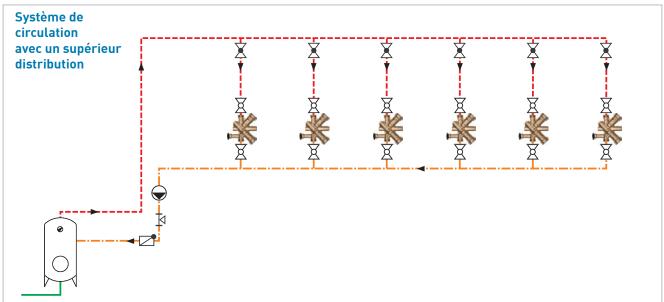
Phase 4

- La température de désinfection est réglée à la température correspondante T2
- L'équilibre entre l'émission de chaleur et la quantité d'eau requise sont ajustés les uns aux autres, réglant ainsi automatiquement l'équilibrage thermique.
- Le débit de base devient inactif et la quantité d'eau est réduite au débit nécessaire.



Valeurs des caractéristiques de commande définies en usine:


T₁-Température de l'eau chaude 58°C (plage: 35-60°C)


T₂-Température de désinfection 70°C (plage: 70-75°C)

Druckverlust

Exemple d'installation

SIA	Texte	JRG Code
	TWK – Eau froide – WKR	
	TWW – Eau chaude – WWV	
	TWZ – Circulation WW – WWR	
	Robinet d'arrêt	5200-5234
\bowtie	Robinet à bille	8339
	Clapet de retenue	1682
M	Organe de régulation*	6310
	JRGUTHERM Rég. de circulation	6320+8339
	Pompe	

^{*} Seulement si la pompe ne peut pas être réglée.

Réglage/Plage de réglage

Réglage du régulateur de circulation

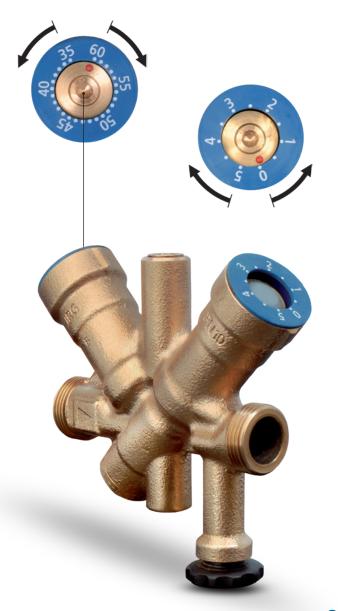
Par principe, tous les régulateurs de circulation montés sur l'installation sont réglés aux mêmes valeurs. Un réglage progressif est possible. Les valeurs de réglage initial figurent aux tableaux 1 et 2.

L'équilibrage de chaque boucle de circulation est opéré automatiquement.

Emballage de transport /Isolation

L'emballage de transport du régulateur de circulation JRGUTHERM 2T sert d'isolation thermique après le montage et le réglage initial du régulateur.

- Conductivité thermique $\lambda_{\rm D} = 0.033$ W/mK
- Comportement au feu (BKZ) 5.1/B1
- Température d'utilisation ≤ 90°C


Réglage initial du régulateur de circulation

Toute modification des valeurs d'usine engage exclusivement la responsabilité de l'exécutant. La valeur d'usine du régulateur de circulation JRGUTHERM 2T peut être modifiée comme suit:

Retirez le capot plombé et introduisez la clé à six pans dans le trou hexagonal respectif: T1 pour la température de circulation et T2 pour la température de désinfection.

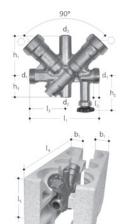
Si vous tournez la clé dans le sens horaire, la température baisse, si vous la tournez dans le sens horaire inverse, la température augmente. La température ne doit pas être modifiée plus que jusqu'à la butée (minimum/maximum).

Réglage initial/Plage de réglage

Plages de réglage

Tableau 1: température d'alignement T₁ (eau chaude)

Réglage [°C]	Température minimum de l'eau du chauffe-eau [°C]	Température maximum de l'eau du chauffe-eau [°C]
35	38	_40
40	_43	_45
45	48	50
50	53	55
55	_58	_60
58 (valeur d'usine)	61	63
60	63	


Tableau 2: température d'alignement T₂ (désinfection thermique)

Valeurs graduation	Température de désinfection correspondante [°C]	Température initiale de désinfection [°C]	Température minimum de l'eau du chauffe-eau [°C]
0 (valeur d'usine)	~ 70	66	≥ 75
1	~ 71	67	≥ 76
2	~ 72	68	≥ 77
3	~ 73	69	≥ 78
4	~ 74	70	≥ 79
5	_~ 75	71	≥ 80

Entretien

- Le régulateur de circulation JRGUTHERM 2T ne nécessite aucun
- La notice de montage et de fonctionnement livrée avec le produit doit être remise au constructeur lors de la livraison de l'installation.

JRGUTHERM 2T/Accessoires

Régulateur de circulation JRGUTHERM 2T, PN 10

• Température: max. 90°C

• Matériel: bronze

• Raccord: filetage mâle

poids (kg)	GF Code	JRG Code	DN (mm)	GN (inch)
1,033	350 831 421	6325.015	15	1/2
1,110	350 831 422	6325.020	20	3/4

G	N	DN	b1	d1 G	d2	h1	h2	h3	l1	l2	l3	14	15	16	
(inc	h) (mm)	(mm)	(inch)	(inch)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
	7.	15	37	3/4	1/4	//	E7	2.2	110	L	57	260	82	61	1.
	/2	13	3/	74	74	04	57	33	110	0	57	200	02	01	4

Thermomètre

- Description: pour 3500, 3510, 6325
- Matériel: acier inoxydable

GN	DN	JRG	GF	poids	d	d1 G	l1	l2	\bigcirc
(inch)	(mm)	Code	Code	(kg)	(mm)	(inch)	(mm)	(mm)	
1/4	8	8349.080	350 830 191	0,080	52	1/4	19	35	17

Sonde de température PT 1000, PN 10

• Température: Max. 0 - 105°C

GN	DN	JRG	GF	poids	d1 G	l1	l2	\bigcirc
(inch)	(mm)	Code	Code	(kg)	(inch)	(mm)	(mm)	
1/4	8	6326.001	350 830 182	0,072	1/4	46	1000	16

Accessoires/Raccords vissés

Thermomètre

• Description: pour 8348.080

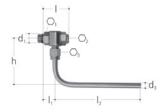
• Matière: laiton, synthétique

d	JRG	GF	poids	d1	l1
(mm)	Code	Code	(kg)	(mm)	(mm)
52	8348.001	350 830 194	0,030	9	62

Doigt de gant

- Description: pour 8348.001
- Matériel: acier inoxydable, EPDM

GN	JRG	GF	poids	d1 G	d2	l1	l2	
(inch)	Code	Code	(kg)	(inch)	(mm)	(mm)	(mm)	
1/4	8348.080	350 830 192	0,030	1/4	9	15	35	13



JRG LegioStop Robinet de vidange, PN 16

- Température: max. 90°C (réglable à 45°C)
- Matériel: laiton
- Raccord: filetage mâle *pour 5120

GN	DN	JRG	GF	poids	d1 R	d2	d3	h		l1	l2
 (inch)	(mm)	Code	Code	(kg)	(inch)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
1/4	8	7301.080	350 896 020	0,053	1/4	30	14	45	46	25	38

Accessoires/Raccords vissés

Robinet pour prélèvement d'échantillons, PN 16

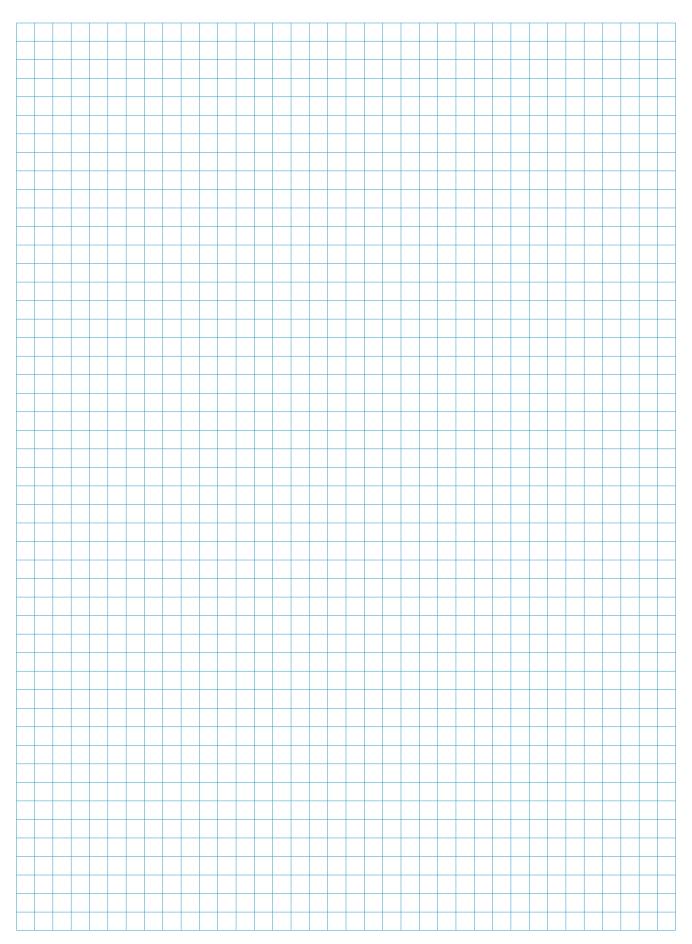
- Description: pour l'analyse microbiologique de l'eau avec indicateur de température
- Température: max. 90°C
- Matériel: bronze, acier inoxydable, EPDM
- Raccord: filetage mâle


GN	DN	JRG	GF	poids	d1 R	d3	h	- 1	l1	l2	\bigcirc 1	⊘3	⊘2
(inch)	(mm)	Code	Code	(kg)	(inch)	(mm)	(mm)	(mm)	(mm)	(mm)			
1/4	8	7306.080	351 110 365	0,190	1/4	8	65	35	16	125	20	14	5

Raccord, PN 10

- Description: pour 3600, 6320, 6325
- Température: max. 90°C
- Raccord: filetage intérieur
- Consiste en: robinet d'arrêt à bille, écrou libre

GN	DN	JRG	GF	poids	d1 Rp	d2 G	- 1	\bigcirc 1	○2	⊘3	Z
(inch)	(mm)	Code	Code	(kg)	(inch)	(inch)	(mm)				(mm)
1/2	15	8339.240	350 887 710	0,170	1/2	3/4	55	30	27	6	43
3/4	20	8339.320	350 887 911	0,260	3/4	1	55	37	32	6	47

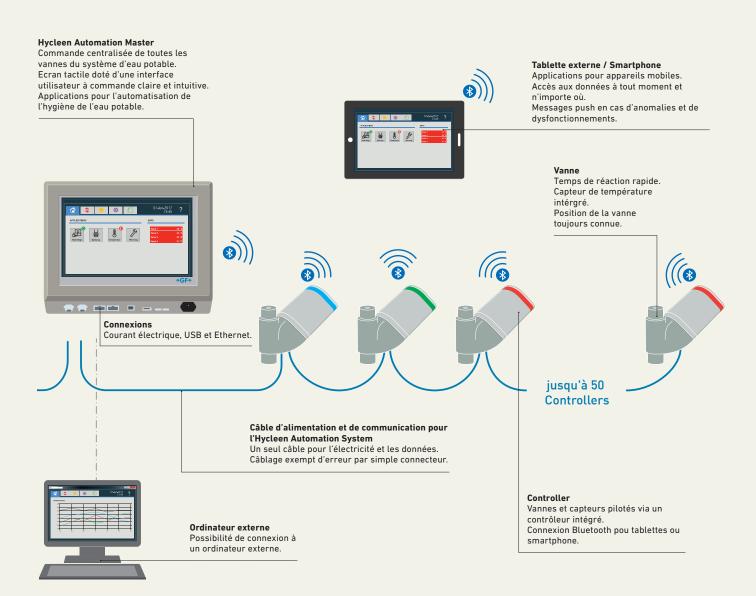


Raccord avec soupape de retenue

- Matière: Laiton, plastique, EPDMRaccord: filetage mâle

GN	DN	JRG	GF	poids	d1R	d2 G	-	l1	l2	Z	\bigcirc 1	○2
(inch)	(mm)	Code	Code	(kg)	(inch)	(inch)	(mm)	(mm)	(mm)	(mm)		
1/2	15	8208.240	351 055 901	0,090	1/2	3/4	40	34	6	19	30	19
3/4	20	8208.320	351 056 001	0,150	3/4	1	44	37	7	20	37	24

Notes


Hycleen Automation System

Hycleen Automation System

Commande simple et pratique de toutes les vannes par l'intermédiaire d'un Master

L'Hycleen Automation System de GF Piping Systems propose un ensemble ingénieux destiné à l'automatisation des installations d'eau potable. Les capteurs et Controllers intégrés aux vannes saisissent les valeurs requises. Le Master contrôle l'ensemble des processus et aide, grâce à ses applications, à obtenir une installation d'eau potable optimisée, à l'hygiène irréprochable - protocole et reporting inclus. Les composants parfaitement synchronisés sont connectés à l'aide d'un câblage simple à réaliser.

Hycleen Automation System

Les avantages

[†] Hygiène

Niveau de température constant et renouvellement régulier de l'eau

Evite la formation d'un biofilm et le risque de légionellose par équilibrage hydraulique et rinçage automatique.

* Automatisation

Commande centrale et indicateur d'état

Commande aisée de la technique du bâtiment par l'intermédiaire d'une interface utilisateur centralisée sans contact manuel avec les vannes et les capteurs.

Surveillance et sécurité

Protocole et reporting

Surveillance et sauvegarde des données relatives à la température dans les rapports établis de manière automatique.

Possibilité d'accès aux données par l'intermédiaire du système d'exploitation du bâtiment.

Surveillance à distance

Possibilité de surveillance par l'intermédiaire d'appareils externes tels que smartphone, tablette ou ordinateur.

* Bureau d'étude

Planification sûre et rapide

Dimensionnement du système selon des règles simples.

Programmation aisée des applications et de tous les paramètres à l'aide du Master.

Equilibrage hydraulique sans calculs complexes.

* Installateur

Plug & Play

Installation aisée avec un seul câble pour l'électricité et les données.

Mise en service rapide assistée par logiciel.

Reconnaissance automatique par le Master du type et de l'identification (ID) de tous les Controllers raccordés.

Facilité d'utilisation

Interface utilisateur claire et intuitive.

Possibilité de connexion Bluetooth au système depuis un smartphone ou une tablette.

+ Exploitant

Système d'eau potable à entretien minime

Processus automatique de maintenance des vannes d'équilibrage.

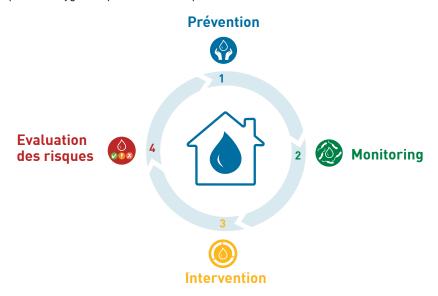
Sécurité d'exploitation

Surveillance et consignation des données liées à l'hygiène. Accès sécurisé aux données par reconnaissance des appareils externes autorisés.

Prestations de service

Assistance à la planification et à la mise en service. Evaluation des données et conseils en cours de fonctionnement.

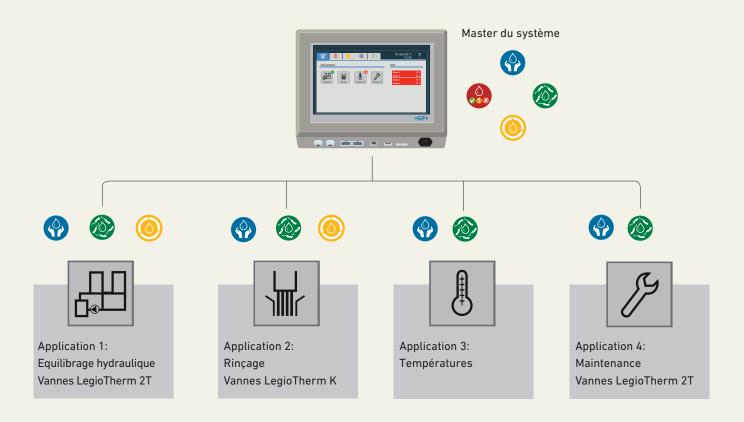
Lecture des données et mises à jour des logiciels.


Hycleen Automation System

Installation d'eau potable sûre et optimisée en matière d'hygiène

Les services d'approvisionnement d'eau vérifient régulièrement la qualité de l'eau potable, ils ne sont néanmoins responsables que jusqu'à l'entrée du bâtiment. A l'intérieur du bâtiment, la responsabilité incombe à l'exploitant. Des températures inadéquates, la stagnation et le biofilm favorisent le risque de prolifération des bactéries. Dans ce contexte, il convient d'accorder le plus grand soin à la planification, à la construction et à l'exploitation des installations d'eau potable dans les bâtiments.

Concept d'hygiène


"Hycleen – en 4 étapes pour une hygiène optimale de l'eau potable"

A l'aide de l'Hycleen Automation System, GF Piping Systems assiste les bureaux d'études, les installateurs et les exploitants de multiples manières, afin de mettre en oeuvre le concept "Hycleen – en 4 étapes pour une hygiène optimale de l'eau potable".

La gestion centralisée des données, la commande par le Master, l'efficacité des vannes LegioTherm et capteurs, l'utilisation simplifiée des logiciels et l'ingéniosité des applications LegioTherm permettent une automatisation réussie des plus importantes mesures d'hygiènes.

	Prévention	Circulation suffisante dans toutes les sections de l'installation Garantie d'une température minimale conforme à la norme spécifique au pays Equilibrage hydraulique constant dans toutes les phases d'exploitation Renouvellement régulier de l'eau par rinçage automatique
	Monitoring	Surveillance fiable de la température Enregistrement des données de mesure et consignation des mesures d'hygiène effectuées
	Intervention	Désinfection thermique ou chimique régulière
N I N	Evaluation des risques	Vaste base de données pour l'évaluation de l'état et la détection des risques

Hycleen Automation System Applications

L'Hylceen Automation System propose des applications polyvalentes, immédiatement prêtes à l'emploi pour une installation d'eau potable sûre et optimisée en matière d'hygiène.

Outre les applications standard fournies, des applications supplémentaires pourront à l'avenir être définies librement, programmation en fonction du temps, des valeurs des capteurs ou des données externes.

Tous les programmes et fonctionnalités peuvent être commandés de manière intuitive par l'intermédiaire de l'écran tactile de l'Hycleen Automation Master. Le Master est relié aux Controllers qui commandent les différentes vannes ainsi que les capteurs. Tous les capteurs sont soumis à une surveillance permanente et les éventuelles anomalies sont immédiatement signalées.

Hycleen Automation Master

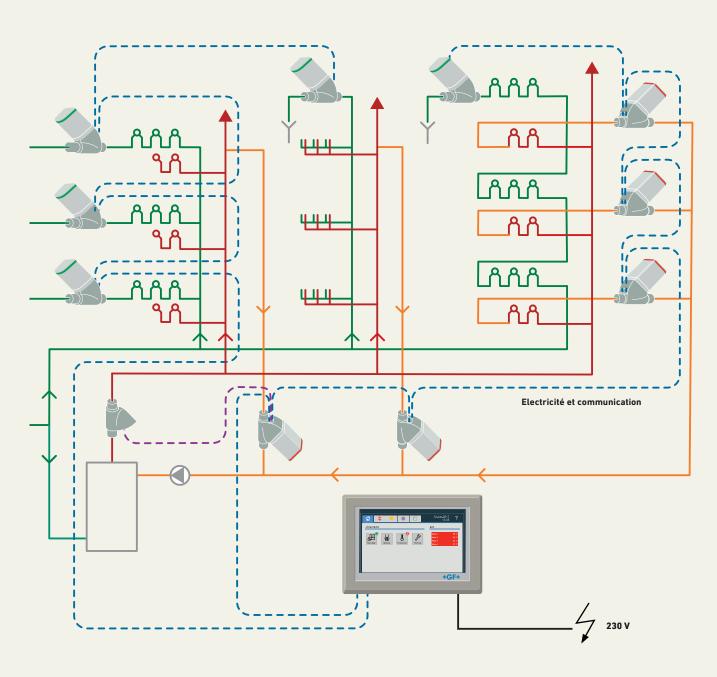
- Un seul Master pour toutes les applications doté d'un concept de commande intuitif
- Fonctions de surveillance et de reporting individuellement adaptables avec sauvegarde des données

Application 1: Equilibrage hydraulique – LegioTherm 2T

- Equilibrage hydraulique pour l'eau froide et l'eau chaude en fonction de la température
- Désinfection thermique
- Surveillance de la température
- Débit de fuite réglable

Application 2: Rinçage – LegioTherm K

- Rinçage du système d'eau froide et d'eau chaude
- Surveillance de la température


Application 3: Températures

- Affichage de toutes les températures en temps réel
- · Représentation graphique claire
- Sauvegarde de toutes les températures des vannes dans les protocoles

Application 4: Maintenance - LegioTherm 2T

- · Maintenance automatique 1 fois par semaine
- Empêche l'immobilisation ou l'obstruction des vannes

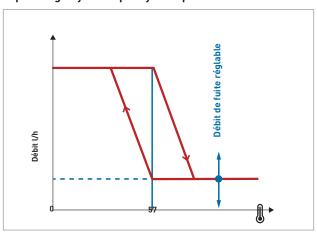
Schéma d'installation

Composants du système

Hycleen Automation System - Application pour l'équilibrage hydraulique

Equilibrage hydraulique en fonction de la température

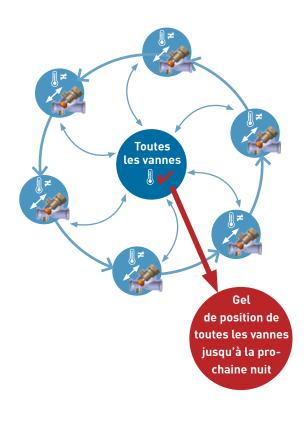
Tout particulièrement dans les grands systèmes de distribution d'eau chaude, tels que les hôpitaux, les hôtels et les maisons de retraite, la stagnation, les surfaces rugueuses et les températures se situant en dessous de 50 °C favorisent grandement la formation d'un biofilm et ainsi la prolifération de légionelles. Des températures suffisamment élevées et un renouvellement régulier de l'eau jouent un rôle essentiel en matière de prévention contre les légionelles.


La bonne circulation de l'eau chaude dans l'ensemble du réseau de tuyauterie engendre un effort de calcul considérable pour le bureau d'étude. En outre, les données théoriques ne correspondent que rarement aux conditions d'installation réelles.

De ce fait l'Hycleen Automation System offre plusieurs possibilités pour un équilibrage hydraulique automatisé. Ainsi, les capteurs de températures intégrés dans les vannes d'équilibrage se chargent du travail de réglage qui incombait à l'installateur.

Equilibrage hydraulique dynamique en fonction de la température

Les vannes d'équilibrage avec sondes de température s'ouvrent et se referment automatiquement, réglant ainsi le débit en fonction de la température de l'eau. Si la température s'élève au-dessus de la température d'équilibrage préprogrammée (réglage d'usine 57 °C), la vanne d'équilibrage se referme jusqu'au débit de fuite (débit minimal). Dès que la température chute au-dessous de la température d'équilibrage, la vanne s'ouvre à nouveau. Grâce à l'équilibrage permanent dans tous les régulateurs de circulation, une température constante de l'eau supérieure à 55 °C est maintenue, empêchant ainsi le développement des bactéries.


Equilibrage hydraulique dynamique

Equilibrage hydraulique statique en fonction de la température

Une fois par jour et à une période de la journée bien déterminée, l'Hycleen Automation Master recherche le volume de débit idéal pour chaque vanne d'équilibrage et ceci jusqu'à ce que toutes les vannes atteignent la température souhaitée. Les régulateurs de circulation se maintiennent dans cette position jusqu'au prochain processus d'équilibrage hydraulique. Une réalisation pendant la nuit lorsque la consommation d'eau est la plus faible est recommandée.

Ainsi, un préréglage manuel des régulateurs de circulation lors de la mise en service est superflu, ce qui représente pour l'installateur un gain de temps lors de la mise en service.

37

Désinfection thermique

La désinfection thermique démarre automatiquement lorsque la température de l'eau chaude du chauffe-eau atteint la température de démarrage préréglée pour éliminer les légionelles (réglage d'usine 70 °C) ou à une période déterminée et programmée.

Toutes les vannes d'équilibrage réduisent le débit au débit de fuite. La première vanne a avoir mesuré la température de consigne reste ouverte pour une durée de 3 minutes (réglage d'usine) et se referme ensuite au débit de fuite. Si pendant ce laps de temps, la température d'équilibrage pour la désinfection thermique (réglage d'usine 75 °C) est atteinte, le régulateur de circulation se referme avant l'expiration des trois minutes. Ce processus se répète pour chaque régulateur de circulation en cascade.

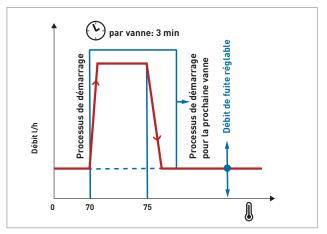
L'équilibre hydraulique est également maintenu pendant la désinfection thermique. Après expiration de la désinfection thermique, le système commute à nouveau en mode de fonctionnement normal avec équilibre hydraulique.

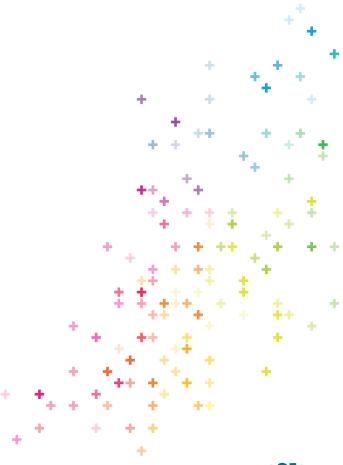
Si une sonde de température est installée à la sortie du chauffe-eau potable et que celle-ci est sélectionnée pour la détection de la température de démarrage, le Master ouvre entièrement la première vanne. Ceci ainsi que l'ouverture en cascade des vannes diminuent la durée totale nécessaire à la désinfection thermique et, en comparaison aux systèmes de circulation pour lesquels toutes les vannes sont ouvertes pendant la désinfection thermique, permettent une économie d'énergie et des coûts.

Sécurité grâce au monitoring de la température

Le monitoring durable de la température et la maintenance automatique renforcent encore le degré de sécurité.

Une alarme est émise si la température diminue dans le système d'eau potable en-dessous d'une température limite préréglée (réglage d'usine 50 °C). Afin de compenser la baisse de température, la vanne s'ouvre automatiquement pour permettre l'équilibrage hydraulique statique.


Maintenance automatique pour les deux modes d'équilibrage hydraulique


Dans le but d'empêcher les dépôts de particules telles que le calcaire et le sable ainsi que la formation d'un biofilm, un processus de maintenance est mis en marche une fois par semaine. Celui-ci procède au rinçage minutieux de tous les tronçons de conduite. Tous les régulateurs de circulation réduisent le débit à un volume minimal. Ensuite chaque vanne d'équilibrage se ferme et s'ouvre successivement pendant une minute et puis revient au débit de fuite.

Les vannes retournent dans la position enregistrée pour l'équilibrage hydraulique aussi bien après une alarme de température qu'après une maintenance automatique.

L'équilibrage automatique redémarre si les valeurs de température ne correspondent plus aux valeurs enregistrées.

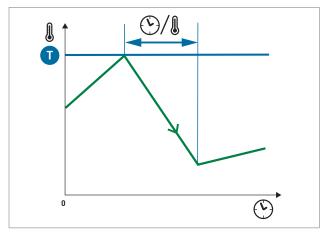
Désinfection thermique

Hycleen Automation System - Application pour le rinçage

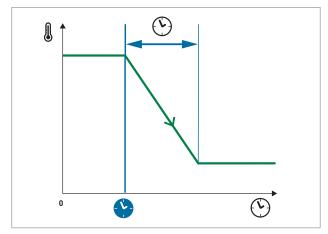
Rinçage automatique

en fonction de la température ou programmé

En cas de stagnation de l'eau pendant une longue période, des bactéries peuvent proliférer jusqu'à atteindre une concentration dangereuse. Si dans un laps de temps de trois jours, le volume complet de l'eau est renouvelé dans la distribution d'eau potable (eau froide et eau chaude), les bactéries sont purgées de l'installation d'eau potable et la concentration bactérienne s'abaisse à un niveau ne constituant aucun risque pour la santé. L'Hycleen Automation System permet un rinçage automatique de la conduite d'alimentation en eau chaude et en eau froide en fonction de la température ou d'une certaine heure de la journée bien définie (minuterie).


Rinçage en fonction de la température

Dès que la température limite d'une sonde de vanne de rinçage LegioTherm K est dépassée (eau froide) ou inférieure (eau chaude), la vanne de rinçage s'ouvre et se referme après un temps préprogrammé lorsque la température correspondante est atteinte.


Rinçage programmé

Toutes les vannes de rinçage LegioTherm K s'ouvrent aussitôt que l'heure préprogrammée est atteinte et se referment une fois la durée de rinçage fixée atteinte. L'intervalle entre deux cycles de rinçage peut être réglé de manière flexible, de façon à ce que plusieurs rinçages par jour soient également possibles. Chaque processus de rinçage est consigné.

Rinçage en fonction de la température

Rinçage programmé

Hycleen Automation System - Gamme

Le Master

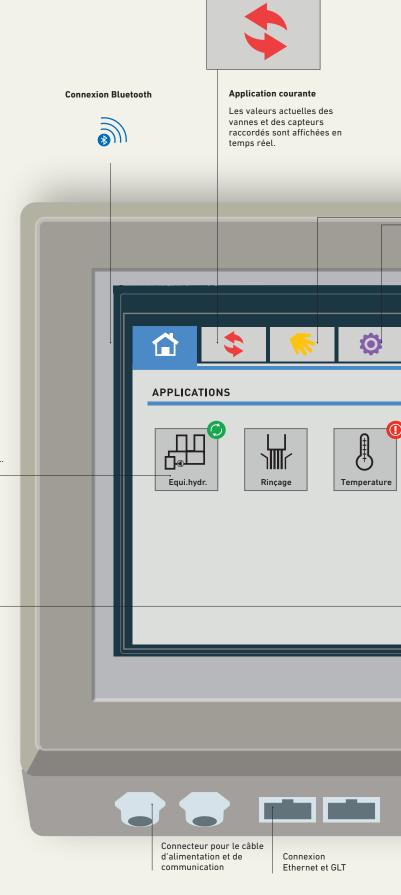
L'Hycleen Automation Master pilote jusqu'à 50 Controllers par deux faisceaux de câble (jusqu'à 500 m chacun).

Lors de la mise en service, le Master détecte toutes les vannes et les capteurs, ID et type compris et les attribue aux applications appropriées.

Le système est ensuite immédiatement prêt au démarrage avec les valeurs prédéfinies. Toutefois, tous les paramètres peuvent aussi aisément être adaptés aux besoins individuels, ceci non seulement par le biais du Master, mais également par l'intermédiaire de la connexion avec un ordinateur, une tablette ou un smartphone.

Si un module d'alimentation sans interruption (ASI) est connecté au Master, toutes les vannes se mettent dans une position prédéfinie en cas de panne de courant.

Applications


Equilibrage hydraulique, rinçage, température, maintenance...

Information complémentaire par le biais de l'écran actuel

Un seul câble pour l'électricité et la transmission des données

Le câble d'alimentation et de communication préassemblé de l'Hycleen Automation System est proposé en plusieurs longueurs. Les raccords de câble permettent de prolonger la longueur de câble sans problème.

Lors du raccordement du câble à la vanne, celle-ci détecte automatiquement l'entrée et la sortie. Toutes les fiches de connexion (M12) sont conçues de manière à exclure toute erreur d'installation.

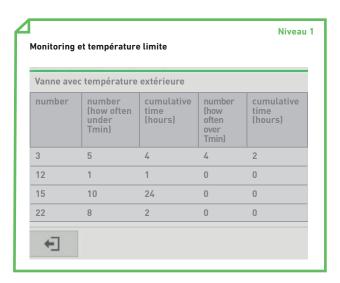
Hycleen Automation System - Protocoles

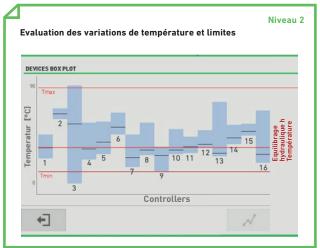
Protocoles des données et des rapports

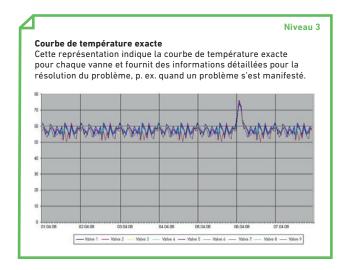
Pour l'exploitant, la surveillance de la température constitue l'instrument le plus important, permettant d'évaluer l'état de l'installation d'eau potable et de détecter les risques de manière fiable et rapide. De cette manière, les responsables sont de surcroît en mesure de démontrer que toutes les mesures nécessaires à l'obtention d'une hygiène impeccable de l'alimentation en eau froide et chaude ont été respectées dans le bâtiment.

L'Hycleen Automation Master n'enregistre pas seulement la température de toutes les vannes, mais émet des rapports complémentaires préprogrammés, comprenant des données de mesure clairement représentées. Même un non spécialiste est aisément en mesure de lire les tendances et de réagir immédiatement en cas d'anomalie.

Protocoles de la température


En fonction de la précision désirée, les valeurs de température peuvent être enregistrées toutes les 5, 15, 30 ou 60 minutes.


Rapports préprogrammés


Les rapports suivants sont disponibles:

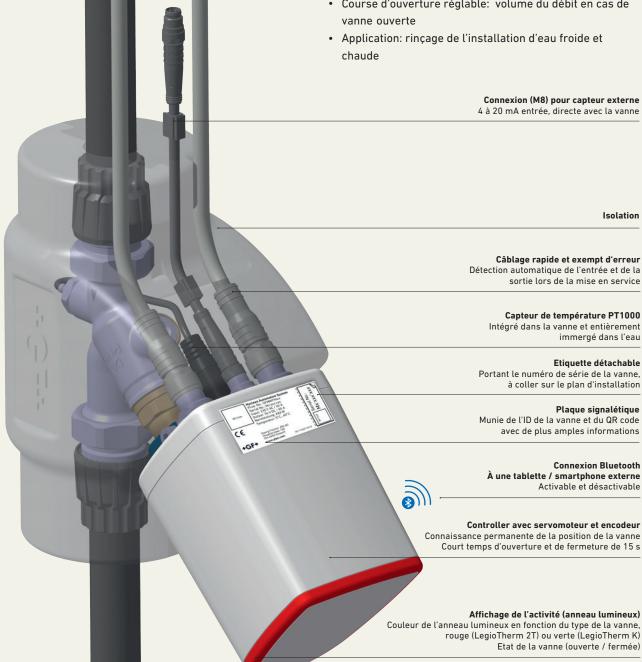
- Température pour l'équilibrage hydraulique
- Température pour le rinçage
- · Désinfection thermique
- Rinçage automatique
- Message d'erreur

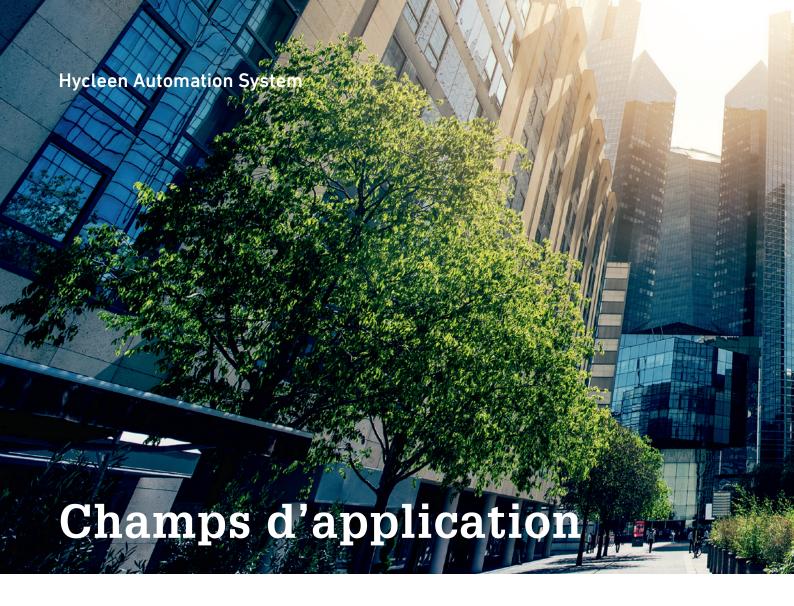
L'intervalle pour un rapport est réglable: un par jour, par semaine, ou par mois. Les données sont évaluées individuellement pour chaque vanne et les informations les plus importantes sont représentées sous forme de tableau ou de diagramme. Tous les rapports sont exportables aux formats PDF et XML. Les informations sont reproduites sur trois niveaux en différents degrés de précision.

Toutes les données sont exportables.

Hycleen Automation System - Gamme

La vanne


Associées au Master, les vannes LegioTherm 2T et LegioTherm K constituent le cœur de L'Hycleen Automation System. La température de l'eau est en permanence mesurée par les vannes et les valeurs obtenues sont transmises au Master. Les vannes sont commandées par les paramètres préprogrammés. Lors de la mise en service, le Master détecte automatiquement toutes les vannes grâce à leur ID.


Vanne d'équilibrage LegioTherm 2T

- Débit de fuite réglable: volume de débit en cas de vanne fermée
- · Linéarité supérieure et meilleure régulation grâce au profil conique
- Application: équilibrage hydraulique, désinfection thermique, rinçage pour la maintenance (1 fois par semaine)

Vanne de rinçage LegioTherm K

• Course d'ouverture réglable: volume du débit en cas de

La surveillance et la prévention de l'installation d'eau potable en matière d'hygiène exige une attention toute particulière dans les bâtiments sensibles. Mais l'hygiène de l'eau potable constitue également un défi de taille dans tous les bâtiments ayant une consommation d'eau fluctuante tels que les hôtels, les bâtiments publics à forte fréquentation, les écoles ou les administrations.

Les erreurs de planification tout comme une exploitation inappropriée peuvent engendrer une stagnation ainsi que des températures défavorables dans le système de tuyauterie. Ceci peut provoquer une contamination microbiologique de l'eau potable par des légionelles et autres agents pathogènes. La conséquence: il est souvent très difficile de garantir une excellente qualité de l'eau dans les grands bâtiments.

Avec le durcissement des lois pour les exploitants d'ouvrages, il convient justement ici de prendre des mesures visant à prévenir des plaintes, des rapports négatifs, une diminution du chiffre d'affaires ou même des sanctions pénales.

L'Hycleen Automation System assiste de façon fiable et facile la planification, l'installation, l'exploitation et la maintenance des installations d'eau potable dans les grands complexes de bâtiments:

- L'équilibrage hydraulique garantit des températures suffisamment élevées et empêche la formation d'un biofilm.
- Les rinçages automatisés empêchent la stagnation et assurent un renouvellement régulier de l'eau dans la distribution d'eau froide et d'eau chaude.
- La surveillance permanente de la température constitue l'indicateur le plus important pour garantir l'hygiène de l'eau potable.
- Une désinfection thermique régulière permet d'éliminer les germes présents.
- Protocoles de toutes les valeurs de mesure pour une documentation sans faille des données d'exploitation et modèle pour l'organe de surveillance.

Maisons de retraite

L'hygiène est prioritaire dans les maisons de retraite, car des personnes âgées souvent immunodéprimées y séjournent. Par conséquent, la propreté de l'eau potable y est d'une importance capitale. Il est dès lors conseillé aux exploitants de maisons de retraite d'accorder une attention toute particulière à l'hygiène de l'installation d'eau potable, de manière à exclure autant que possible les risques pour la santé des résidents.

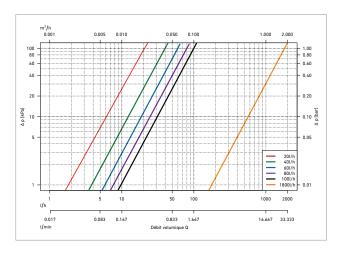
Hôtels

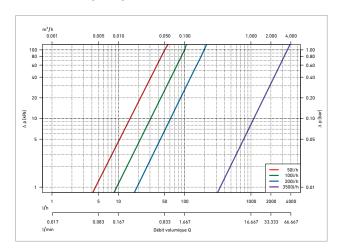
Dans de nombreux hôtels, les chambres et les raccordements d'eau ne peuvent être utilisés en continu. Surtout en cas de courts séjours, il est conseillé d'accorder une attention toute particulière à l'hygiène dans les installations d'eau potable et de les vérifier régulièrement. La plus haute qualité de l'eau potable est importante, car de nombreuses personnes présentent des états de santé différents – un point important pour les exploitants, afin que tous les clients se sentent à l'aise.

Hôpitaux

L'hygiène hospitalière doit répondre aux exigences les plus élevées. L'hygiène dans l'approvisionnement en eau en constitue une partie importante. L'eau potable est utilisée à tous les niveaux – pour se laver les mains avant une opération, pour nettoyer les instruments chirurgicaux et les équipements hospitaliers, dans les zones de restauration, et jusqu'au nettoyage des locaux ou du linge.

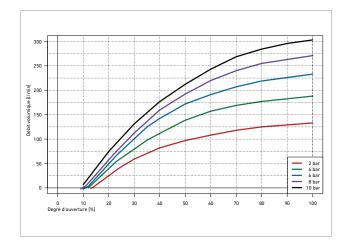
Rien ne fonctionne sans une hygiène de l'eau optimale. Les règles de conduite dans les hôpitaux aident à lutter contre la propagation des infections. Notre concept d'hygiène assure une protection efficace contre la contamination dans le système de tuyauterie et une protection durable contre les infections aidant à prévenir les maladies nosocomiales.


45 +GF+


Données techniques

* Nomogramme

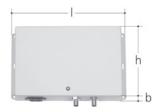
Perte de charge LegioTherm 2T DN15


Perte de charge LegioTherm 2T DN20

Débit de rinçage LegioTherm K DN15

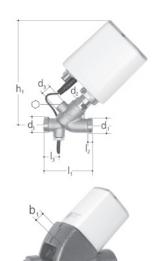
Débit de rinçage LegioTherm K DN20

47 +GF+


Produits

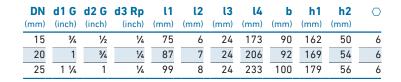
Hycleen Automation Master

- Description: Master pour max. 50 Controller
- Comprenant: écran tactile 10.1", alimentation électrique, connection Bluetooth, 2 fiches M12 pour 2x 300m câble (500m avec Powerbox), 2 Rj45 connecteur (Ethernet), 2 connexions USB (lire / écrire), USB connexion (lecture seule), sortie relais, vis


Tension	JRG	GF	poids	- 1	b	h	Version
	Code	Code	(kg)	(mm)	(mm)	(mm)	
230V / 36V	9900.000	351 110 656	2,300	326	84	214	EU
230V / 36V	9900.001	351 110 655	2,300	326	84	214	СН

Hycleen Automation Powerbox

- Description: alimentation électrique de l'Hycleen Automation System pour étendre de 300m à 500m par faisceau de câbles
- Comprenant: 2m de câble d'alimentation, vis


Tension	JRG Code	GF Code		(mm)			Version
230V / 36V	9901.000	351 110 626	1,000	244	64	164	EU
230V / 36V	9901.001	351 110 625	1,000	244	64	164	СН

JRG LegioTherm 2T Régulateur de circulation avec contrôleur, PN 10

- Température: Max. 90°C
- Matériel: bronze, acier inoxydable, EPDM
- Réglage d'usine: 57°C (réglable 0 90°C) désinfection thermique 70°C (réglable 60 - 90°C)
- Connection: filetage mâle (écrou de raccordement à joint plat)

	DN	JRG	GF	poids
(r	mm)	Code	Code	(kg)
Ī	15	9910.015	351 110 550	0,820
	20	9910.020	351 110 590	1,050
	25	9910.025	351 110 630	1,400

48

Produits

JRG LegioTherm K vanne de rinçage avec contrôleur, PN 10

- Température: Max. 90°C
- Matériel: bronze, acier inoxydable, EPDM
- Réglage d'usine: 20°C (réglable 0 90°C)
- Connection: filetage mâle (écrou de raccordement à joint plat)

DN	JRG	GF	poids
(mm)	Code	Code	(kg)
15	9920.015	351 110 600	0,810
20	9920.020	351 110 610	1,020

DN	d1 G	d2 G	d3 Rp	l1	l2	13	14	b	h1	h2	\bigcirc
(mm)	(inch)	(inch)	(inch)	(mm)							
15	3/4	1/2	1/4	75	6	24	173	90	162	50	6

Hycleen Automation alimentation électrique et câble du communication

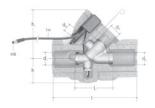
 Description: pour la connexion série des composants de l'Hycleen Automation System (Master, Controller), incl. 2x M12 fiches, ROHS

L	Tension	JRG	GF	poids	d	d1
(m)		Code	Code	(kg)	(mm)	(mm)
1.5	36V	9940.001	351 110 581	0,110	14.5	6,8
5	36V	9940.005	351 110 582	0,300	14.5	6,8
10	36V	9940.010	351 110 583	0,630	14.5	6,8
20	36V	9940.020	351 110 584	1,240	14.5	6,8
50	36V	9940.050	351 110 585	3,200	14.5	6,8

Hycleen Automation Couplage

- Description: Couplage entre 2 câbles d'alimentation électrique et de communication de l'Hycleen Automation System
- Connection: Prise M12

J	RG	poids	GF	- 1	h
Co	de	(kg)	Code	(mm)	(mm)
9941.0	00	0,100	351 110 586	58	14



Hycleen Automation Retrofit jeu de câble

• Description: Adapteur jeu de câble pour JRG LegioTherm câble

d	JRG	poids	GF	- 1	l1
	Code	(kg)	Code	(mm)	(mm)
M12	9942.000	0,090	351 110 588	350	300

Produits

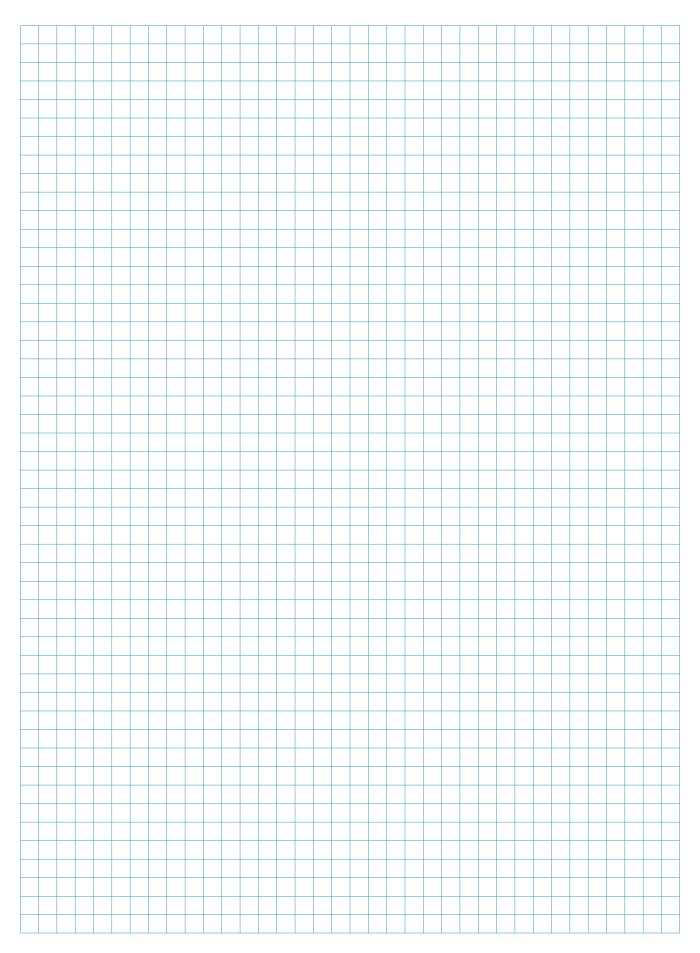
- Description: Senseur de température PT 1000
- Température: Max. 90°C
- Matériel: bronze
- Raccordement: filetage mâle, prise M8

d	JRG	poids	GF	d1 G	d2 G	d3 G	d4 Rp	- 1	l1	h	h1
(mm)	Code	(kg)	Code	(inch)	(inch)	(inch)	(inch)	(mm)	(mm)	(mm)	(mm)
15	9951.015	0,460	351 110 535	3/4	1/2	3/4	1/4	173	75	50	162
20	9951.020	0,570	351 110 661	1	3/4	1	1/4	206	87	52	168

T-Sensor

- Description: Senseur de température PT 1000
 Température: Max. 90°C
- Connection: Prise M8

Pouces	Code	JRG	poids	G	l l	\bigcirc
(inch)		Code	(kg)	(inch)	(m)	
1/4	351 110 611	9952.000	0,150	1/4	1	17



Extension du câble pour T-Sensor

- Description: Connection entre le senseur et le contrôleur
- Connection: Prise M8

	GF		poids			l2
	Code	Code	(kg)	(m)	(mm)	(mm)
Ī	351 110 662	9943.005	0,110	5	34	42

Notes

Calcul de circulation

Le calcul de la perte de chaleur et de pression a pour but de maintenir les différences entre la perte de charge des différents circuits de circulation et la pression de pompe disponible aussi petite que possible, afin que la vanne d'équilibrage puisse compenser la différence.

Lors de la planification des systèmes de circulation, veuillez noter!

- Même avec l'utilisation de vannes thermostatiques de circulation, le calcul du réseau de conduites est la base nécessaire au bon fonctionnement du système de circulation.
- Plus les différences de longueur entre les différents tronçons de circulation sont faibles, plus le calcul et la régulation des boucles de circulation d'un système de circulation sont facilités.
- L'équilibrage hydraulique de nombreuses boucles de circulation avec des tronçons courts est généralement difficile! Au mieux, un préréglage approximatif peut être effectué avec des vannes de régulation mécaniques supplémentaires.
- Plus un système de circulation est étendu et ramifié, plus il est important de connaître les valeurs de réglage exactes de chaque vanne. (Débit volumique, chute de pression et température). De cette manière, il est possible de vérifier si la vanne peut réduire la différence entre la perte de charge du système et la pression de pompe disponible.
- Après un calcul détaillé du système de circulation, ni le système de tuyauterie ni la nature des conduites ne peuvent être changées. Cela conduirait inévitablement à un nouveau calcul.
- Le calcul hydraulique pour un système de circulation dans une installation d'eau potable est effectué lors d'un état de fonctionnement au cours duquel aucun soutirage d'eau potable n'a lieu.

Pour calculer un système d'eau chaude avec circulation, nous recommandons la procédure suivante:

Calculation simplifiée

Le débit volumique correspondant doit être déterminé à l'aide des pertes de chaleur de l'installation d'eau chaude! (Dans le cas d'installations de grande envergure, il peut être nécessaire de prendre en compte différentes pertes de chaleur de la distribution au soussol, des colonnes montantes ou des étages!)

Il doit y avoir une différence de température entre la sortie du chauffe-eau et le retour de la circulation dans le chauffe-eau. La différence doit être comprise entre 2 et 5 Kelvin au maximum, en fonction de la taille de l'installation. (Selon W3 2013 paragraphe 1.4.2, un maximum de 5 Kelvin.)

Selon le système de conduite utilisé, il convient de définir les vitesses d'écoulement pour le dimensionnement du circuit de circulation le plus défavorable et pour déterminer la différence de pression de la pompe. (Selon le système de tuyauterie, des vitesses d'écoulement pouvant atteindre 1,0 m / s peuvent être attendues.)

Avec la détermination des diamètres de tuyaux dans la circulation par le calcul, nous essayons d'obtenir un équilibrage hydraulique le plus précis possible.

Les différences hydrauliques qui ne pouvaient pas être égalisées par le calcul seront ensuite compensées par les vannes thermostatiques de la circulation.

Calculation détaillée

Calcul de circulation

Les informations suivantes doivent être disponibles pour un calcul:

- Température de sortie d'eau chaude du chauffe-eau en °C.
- Température de retour de circulation au Chauffe-eau désirée en °C.
- Différence de température désirée entre Aller et retour en °K.
- Perte de température par mètre en W/m.

Seront déterminés avec le propriétaire et les autres planificateurs de la technique du bâtiment!

C'est une hypothèse et dépend du genre et de la grandeur de l'installation.

C'est une hypothèse et dépend du genre et de la grandeur de l'installation.

(Selon directives W3 2013, chapitre 1.4.2, maximum 5° Kelvin)

Peut-être une supposition, pour les petits systèmes de circulation et dépend de l'isolation de tuyau, du système de tuyauterie, de la température de l'eau et la température ambiante des locaux traversés. Doit être calculée en détail selon l'équation 3 pour les grandes installations.

Valeurs bases de calcul "Kurz und Bündig", 2011
Circulation conventionnelle 14 W/m
Circulation TàT 10 W/m
Circulation TeT 8 W/m

Seules les longueurs des conduites de retour seront considérées!

Instruction de calcul simplifiée

1. Déterminer la perte de chaleur de la totalité de l'installation.

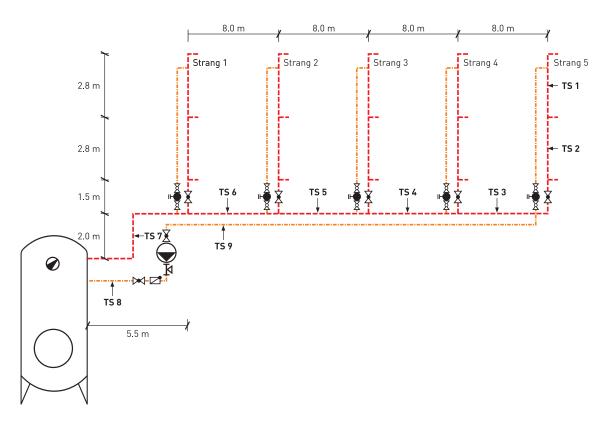
Equilibrage 1	\dot{Q}_{Gesamt}	Pertes de chaleur de l'installationn	W ou J/S
	\dot{Q}_{Rohr}	Perte de chaleur par mètre d'installation	W/m
$Q_{Gesamt} = Q_{Rohr} \times l$	l	Longueur de la boucle de circulation, aller et retour	m

2. Déterminer le débit nécessaire de la pompe de circulation.

Equilibrage 2	\dot{V}	Débit de la pompe	m³/h
$\dot{O}_{G} \times \times 3.6$	Δt	Différence de température aller-retour en °C	K
$\dot{V} = \frac{\dot{Q}_{Gesamt} \times 3.6}{1}$	С	c ≈ 4.187 kJ/(kg × K)	$kJ/kg \times K$
$\Delta t \times c \times \rho$	ρ	ρ ≈ 1000 kg/m ³	kg/m³

3. Déterminer la perte de charge du tronçon le plus défavorable (long) de la boucle de circulation.

Avec le débit de pompe calculé ci-dessus, calculez la perte de charge Δp de la conduite de circulation dans le cas le plus défavorable. Les valeurs Zêta actuelles selon SN EN 1267 du système de tuyauterie correspondant doivent être utilisées. De plus, la pression d'ouverture du dispositif anti-retour doit également être prise en compte. Les données doivent être demandées aux fabricants respectifs! Systèmes GF JRG voir annexe!


4. Déterminer la pompe de circulation.

Avec le débit de refoulement de la pompe déjà déterminé et la perte de charge Δp du circuit de circulation dans le cas le plus défavorable, une pompe de circulation appropriée peut maintenant être sélectionnée. Si aucune pompe appropriée n'est disponible, sélectionnez toujours le type immédiatement supérieur. Idéalement, utilisez une pompe capable de réguler la vitesse. Attention: ne pas utiliser de pompes à autorégulation!

54

J/S

Exemple de calcul simplifié

1. Déterminer la perte de chaleur de la totalité de l'installation.

Température de sortie du chauffe-eau: 60°C

Température d'entrée du chauffe-eau: 57°C (hypothèse) Différence de température: 3 K (hypothèse) Perte de chaleur système TàT: 10 W/m (hypothèse)

•			
Calcul avec l'équilibrage 1	Longueur de tube (m)	Perte de chaleur par mètre (W/m)	Perte de chaleur par tronçon (W)
Tronçon 1	7.1	10	71
Tronçon 2	7.1	10	71
Tronçon 3	7.1	10	71
Tronçon 4	7.1	10	71
Tronçon 5 le plus défavorable	46.6	10	466
Installation complète			750

2. Déterminer le débit nécessaire de la pompe de circulation.

Calcul avec l'équilibrage 2

$$\dot{V} = \frac{\dot{Q}_{Gesamt} \times 3.6}{\Delta t \times c \times \rho} = \frac{750 \, W \times 3.6}{3 \, K \times 4.187 \, \frac{kJ}{kg \times K} \times 1000 \frac{kg}{m^3}} = \textbf{0.215 m3/h} \quad \text{(ou 0.06 l/s)}$$

3. Déterminer la perte de charge du tronçon le plus défavorable (long) de la boucle de circulation.

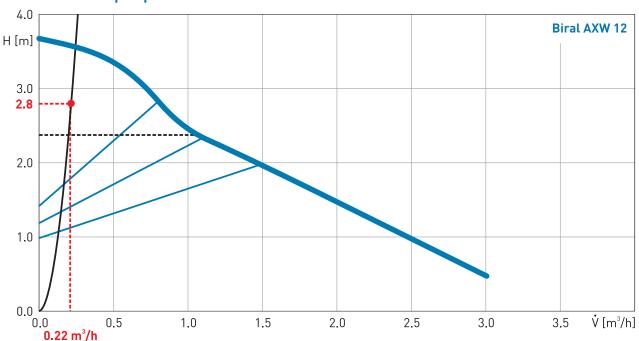
Perte de charge du fluide

Objet: Exemple 1 Données: Fluide: Eau

Calcul simplifié Densité: 983.24 kg/m³

Perte de charge totale: 231.0 mbar

Voie d'écoulement:


Tronçon	Diamètre mm	Système	Long. m	Valeur Zeta	Débit l/s	Vitesse m/s	Perte de charge mbar
TS 1	26 x 3.0	GF JRG Sanipex MT	2.8	0.3	0.060	0.19	0.9
TS 2	26 x 3.0	GF JRG Sanipex MT	2.8	0.3	0.060	0.19	0.9
TS 3	32 x 3.0	GF JRG Sanipex MT	9.5	3.4	0.060	0.11	1.0
TS 4	32 x 3.0	GF JRG Sanipex MT	8.0	0.2	0.060	0.11	0.7
TS 5	40 x 3.5	GF JRG Sanipex MT	8.0	0.3	0.060	0.07	0.2
TS 6	40 x 3.5	GF JRG Sanipex MT	8.0	0.3	0.060	0.07	0.2
TS 7	40 x 3.5	GF JRG Sanipex MT	7.5	5.0	0.060	0.07	0.3
TS 8	20 x 2.5	GF JRG Sanipex MT	7.5	9.4	0.060	0.34	14.1
TS 9	20 x 2.8	GF JRG Sanipex	39.1	4.4	0.060	0.57	212.7

Total 231.0

Pression d'ouverture du clapet 1": 50 mbar (selon données du fabricant)
Pression de la pompe nécessaire: 50 mbar + 231 mbar = **281 mbar** (2.8 MwS)

Comme le montre le calcul ci-dessus, les pertes de charge dans le flux (TS1 à TS7) ne sont pas pertinentes. Ces faibles valeurs sont dues au faible débit lors de la circulation et à la taille plus grande des conduites.

4. Déterminer la pompe de circulation.

Point rouge: Point de dimensionnement de la circulation

Instruction de calcul détaillée

Plus un système de circulation est large et ramifié, plus il est important de connaître avec précision les valeurs de réglage de chaque vanne de régulation de circulation. Cela signifie que la perte de chaleur correspondante doit être déterminée pour chaque circuit de circulation et que, de ce fait, le débit volumétrique peut être déterminé! Avec la perte de pression dans la vanne, il est maintenant possible de déterminer, à l'aide du diagramme du fabricant, si la vanne de régulation de la circulation est appropriée pour créer les différences de pression requises.

1. Déterminer la perte de chaleur d'un tube isolé.

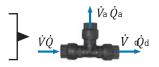
Il convient de noter que dans différentes parties du bâtiment (par exemple, les caves, les colonnes montantes, la dérivation d'étage, etc.), différentes températures prévalent, ce qui entraîne également des pertes de chaleur différentes!

$$\dot{Q}_{Rohr} = k_R imes \Delta t$$
 Pertes de chaleur du tube isolé par mètre W/m k_R Coefficient de transfert de chaleur du tuyau y compris l'isolation Δt Différence entre la température de l'eau chaude et la K température ambiante

2. Déterminer la perte de chaleur de la totalité de l'installation.

Le calcul est analogue au "calcul simplifié", mais avec les pertes de chaleur spécialement calculées dans les différentes parties du bâtiment.

Équation 1	\dot{Q}_{Gesamt}		W ou J/S
$\dot{Q}_{Gesamt} = \dot{Q}_{Rohr} \times l$	\dot{Q}_{Rohr}	Perte de chaleur par mètre d'installation Longueur aller et retour de la boucle de circulation	W/m m


3. Déterminer le débit de la pompe de circulation.

Équation 2	\dot{V}	Débit de la pompe	m³/h
ė a	Δt	Différence de température aller et retour en	K
$\dot{V} = \frac{\dot{Q}_{Gesamt} \times 3.6}{\Delta t \times c \times \rho}$	С	Chaleur massique de l'eau (c≈4.187 kJ/[kg*K])	$kJ/kg \times K$
$\Delta\iota \times \iota \times \rho$	ρ	Densité de l'eau (ρ ≈ 1000 kg/m³)	kg/m³

$$\dot{V} = \frac{J \times m^3 \times kg \times K \times 3.6}{s \times kg \times kI \times K} = \frac{m^3}{h}$$
 3.6 Facteur de correction kJ en J et h en s

4. Déterminer les débits des différents circuits de circulation.

Le calcul dans les différents circuits de circulation est analogue à l'équation 1, les pertes thermiques étant déterminées par l'équation 3.

Comme la différence de température entre un tronçon et le chauffe-eau doit toujours être la même dans les deux sens d'écoulement, on peut simplifier de la manière suivante:

$$\qquad \qquad \frac{\dot{Q}_{\text{a}}}{\dot{Q}_{\text{d}}} = \frac{\dot{V}_{\text{a}}}{\dot{V}_{\text{d}}}$$

De plus, l'équation suivante s'applique à chaque tronçon:

$$\dot{V} = \dot{V}_a + \dot{V}_d$$

Ainsi, avec les équations suivantes, les flux volumétriques de chaque circuit de circulation peuvent être calculés. Le calcul du débit volumétrique commence par la première section située derrière le chauffeeau. Ce débit est identique au débit de refoulement de la pompe déterminé dans l'équation 2.

$$\dot{V}_a = \dot{V} \times \frac{\dot{Q}_a}{\dot{Q}_a + \dot{Q}_d}$$

$$\dot{V}_d = \dot{V} \times \frac{\dot{Q}_d}{\dot{Q}_d + \dot{Q}_a}$$

 \dot{V} a/d Débit volumique de la sortie/passage

 \dot{Q} a/d $\,$ Perte de chaleur de la sortie/passage

5. Calcul détaillé des pertes de charge.

Avec les débits déterminés des différents circuits de circulation, il est maintenant possible de déterminer avec précision la dimension de la conduite du système. Les valeurs zêta actuelles selon SN EN 1267 du système de tuyauterie correspondant doivent être utilisées. Les données sont disponibles auprès des fabricants respectifs! La détermination de la taille de la conduite a pour but de réduire au maximum la différence entre les pertes de charge dans les différentes sections!

Dans les systèmes de tuyauterie sans restriction de section, des vitesses maximales de 1,0 m / s sont autorisées!

La perte de pression dans le circuit de circulation le plus défavorable (le plus long) se traduit par la hauteur de refoulement de la pompe nécessaire à la conception de la pompe de circulation. De plus, la pression d'ouverture du clapet antiretour doit également être prise en compte. Les valeurs correspondantes doivent être demandées aux fournisseurs! Systèmes GF JRG voir annexe.

6. Détermination de la pompe de circulation.

Avec le débit de refoulement de la pompe déjà déterminé et la perte de charge Δp du circuit de circulation dans le cas le plus défavorable, une pompe de circulation appropriée peut maintenant être sélectionnée. Si aucune pompe appropriée n'est disponible, sélectionnez toujours le type immédiatement supérieur. Idéalement, utilisez une pompe capable de réguler la vitesse.

Attention: ne pas utiliser de pompes à autorégulation!

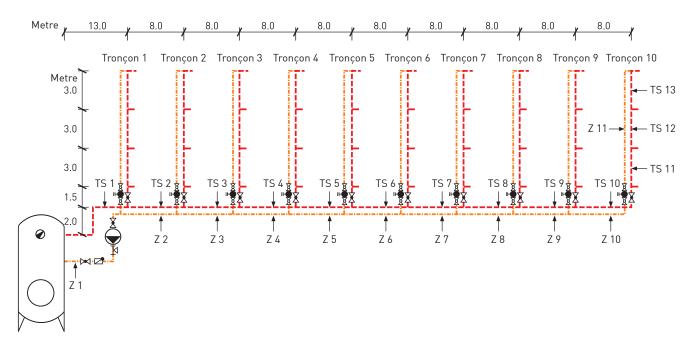
7. Déterminer la chute de température de chaque tronçon de circulation.

Les températures de consigne calculées des vannes de régulation de circulation peuvent être utilisées pour un préréglage plus précis du système de circulation!

$\Delta t_{TS} = \frac{l \times \dot{Q}_{TS}}{\dot{V}_{TS} \times \rho \times c}$	Δt_{TS} $l \times \dot{Q}_{TS}$ \dot{V}_{TS}	Différence de température entre le début et la fin d'un tronçon Perte de chaleur du tronçon Débit du tronçon	K W ou J/s m³/h
$\Delta t_{TS} = \frac{J \times h \times m^3 \times kg \times K}{s \times m^3 \times kg \times kJ} = K$	<i>c</i> ρ	Chaleur massique de l'eau (c = 4.187 kJ/(kg x K) Densité de l'eau $\rho \approx 1000 \text{ kg/m}^3$	kJ/kg × K kg/m³
Équation 7 $t_W = t_{WWS} - \sum\!\! \Delta t_{TS}$	$t_W \sum \Delta t_{TS} \ t_{WWS}$	Température à la fin du tronçon Différence de température jusqu'au point de calcul Température de sortie du chauffe-eau	°C K °C

8. Contrôle des vannes de régulation de circulation sélectionnées

Lorsque la vanne de régulation de circulation est réglée, il est nécessaire d'égaliser la différence de pression Δp TS des boucles de circulation respectives sur la ligne de circulation dans le cas le plus défavorable.


Avec le débit TS et la différence de pression Δp TS, il est maintenant possible de vérifier dans le diagramme du régulateur de circulation concerné si les valeurs se situent dans la plage de réglage recommandées.

Vous pouvez également calculer la valeur kV de la vanne de régulation de la circulation à l'aide de l'équation suivante. Cette valeur calculée doit également être dans la plage de contrôle de la vanne!

Équation 8	\dot{V}_{TS}	Débit du tronçon	m³/h
. 1000	Δp_{TS}	Perte de charge du tronçon	mbar
$k_V = \dot{V}_{TS} \times \sqrt{\frac{1000}{\Delta p_{TS}}}$	k_V	La valeur kV fait référence au débit volumique en m3/h pouvant traverser la vanne avec une perte de charge de 1 bar. La plage kV d'une vanne de régulation est spécifiée par le fabricant dans la documentation technique.	m³/h

Exemple de calculation détaillée

Plus un système de circulation est large et ramifié, plus il est important de connaître avec précision les valeurs de réglage de chaque vanne de régulation de la circulation. Cela signifie que pour chaque circuit de circulation, il faut déterminer la perte de chaleur correspondante et à partir de là le débit volumétrique! Avec la chute de pression dans la vanne, il est maintenant possible de déterminer, à l'aide du diagramme du fabricant, si la vanne de régulation de la circulation est adaptée à la création des différences de pression requises.

1. Déterminer la perte de chaleur d'un tube isolé.

Il convient de noter que différentes températures prévalent dans différentes parties du bâtiment (par exemple, le sous-sol, les gaines de colonnes montantes, le dérivations d'étage, etc.), ce qui entraîne également des pertes de chaleur différentes! Les pertes de chaleur des différentes pièces de l'installation peuvent être déterminées à l'aide de l'équation 1 ou plus précisément à l'aide de l'équation 3!

2. Détermination de la perte de chaleur de toute l'installation d'eau chaude.

Le calcul est analogue au "calcul simplifié", mais avec les pertes de chaleur spécialement calculées dans les différentes parties du bâtiment.

Pour l'exemple de calcul, nous utilisons les données suivantes:

60°C	
55°C	(Admis)
5 K	(Admis)
14 W/m	(Admis)
10 W/m	(Admis)
	55°C

	Longueur en m	W/m	W/total
Tronçon 1	10.5	10	105
Tronçon 2	10.5	10	105
Tronçon 3	10.5	10	105
Tronçon 4	10.5	10	105
Tronçon 5	10.5	10	105
Tronçon 6	10.5	10	105
Tronçon 7	10.5	10	105
Tronçon 8	10.5	10	105
Tronçon 9	10.5	10	105
Tronçon 10	10.5	10	105
TS1 à TS10	87.0	14	1218
Perte de chaleur de l'installation			2268 W

3. Détermination du débit de la pompe de circulation.

Calcul avec l'équation 2

$$\dot{V} = \frac{\dot{Q}_{Gesamt} \times 3.6}{\Delta t \times c \times \rho} = \frac{2268 W \times 3.6}{5 K \times 4.187 \frac{kJ}{kg \times K} \times 1000 \frac{kg}{m3}} =$$
0.390 m3/h (ou 0.11 l/s)

4. Détermination du débit des différents circuits de circulation.

Le calcul des pertes thermiques dans les différents circuits de circulation s'effectue maintenant avec les équations 4 et 5

Débit des différents circuits de circulation

1	2	3	4	5	6	7
Tronçon	Ċа	ġ _d	$\dot{Q}_a + \dot{Q}_d$	v̂a+v̂d	ν̈́a	v̂ _d
	W	W	W	l/h	l/h	l/h
Tronçon 1	105	1953	2058	390.01	19.90	370.11
Tronçon 2	105	1736	1841	370.11	21.11	349.00
Tronçon 3	105	1519	1624	349.00	22.56	326.44
Tronçon 4	105	1302	1407	326.44	24.36	302.07
Tronçon 5	105	1085	1190	302.07	26.65	275.42
Tronçon 6	105	868	973	275.42	29.72	245.70
Tronçon 7	105	651	756	245.70	34.12	211.57
Tronçon 8	105	434	539	211.57	41.22	170.36
Tronçon 9	105	217	322	170.36	55.55	114.81
Tr.10 + TS10	217	0	217	114.81	114.81	0.00

<sup>Tronçon à la dérivation
Pertes de chaleur dans le tronçon
Pertes de chaleur dans la dérivation
Pertes de chaleur après le passage
Débit de circulation nécessaire avant le tronçon
Débit volumique requis dans les tronçons individuels (équation 4)
Pétit de circulation pécessaire dans le passage</sup>

⁶ Débit volumique requis dans les tronçons muivo 7 Débit de circulation nécessaire dans le passage

Débit des différents circuits de circulation

	8	9	
Tronçon	ġ _a + ġ _d	V _{Ts}	
	W	m³/h	l/s
Z 01	2268	0.39	0.11
Z 02	1953	0.34	0.09
Z 03	1736	0.30	0.08
Z 04	1519	0.26	0.07
Z 05	1302	0.22	0.06
Z 06	1085	0.19	0.05
Z 07	868	0.15	0.04
Z 08	651	0.11	0.03
Z 09	434	0.07	0.02
Z 10 + Z 11	217	0.04	0.01

⁸ Perte de chaleur du passage 9 Débit du tronçon (équation 2)

5. Calcul détaillé des pertes de charge.

Avec les débits calculés avec la perte de chaleur dans les différents tronçons, la perte de charge de la boucle de circulation la plus défavorable peut être calculée. Dans le calcul de la perte de charge, il convient d'utiliser les valeurs zêta actuelles du système de tuyauterie correspondant, conformément à SN EN 1267. Les données sont disponibles auprès des fabricants respectifs! Systèmes GF JRG voir annexe!

Perte de charge de la boucle la plus défavorable (Z 01 à Z 11)

Objet: Exemple 2 Données: Fluide: Eau 55°C Calcul détaillé Densité 985.73 kg/m³

Perte de charge totale: 122.6 mbar Boucle: Z 11 bis Z 01

Tronçon	Dimension mm	Système	Long. m	Valeur Zeta	Débit l/s	Vitesse m/s	Perte de charge mbar
Z 11	20 x 2.8	GF JRG Sanipex	10.5	3.4	0.01	0.12	2.5
Z 10	20 x 2.5	GF JRG Sanipex MT	8.0	2.7	0.01	0.11	1.6
Z 09	20 x 2.5	GF JRG Sanipex MT	8.0	0.5	0.02	0.17	3.0
Z 08	20 x 2.5	GF JRG Sanipex MT	8.0	0.5	0.03	0.23	4.8
Z 07	20 x 2.5	GF JRG Sanipex MT	8.0	0.5	0.04	0.34	9.9
Z 06	20 x 2.5	GF JRG Sanipex MT	8.0	0.5	0.05	0.45	16.4
Z 05	20 x 2.5	GF JRG Sanipex MT	8.0	0.5	0.06	0.57	24.3
Z 04	26 x 3.0	GF JRG Sanipex MT	8.0	0.3	0.07	0.35	7.3
Z 03	26 x 3.0	GF JRG Sanipex MT	8.0	0.3	0.08	0.41	9.8
Z 02	26 x 3.0	GF JRG Sanipex MT	8.0	0.3	0.09	0.48	12.5
Z 01	26 x 3.0	GF JRG Sanipex MT	15.0	3.9	0.11	0.51	30.5

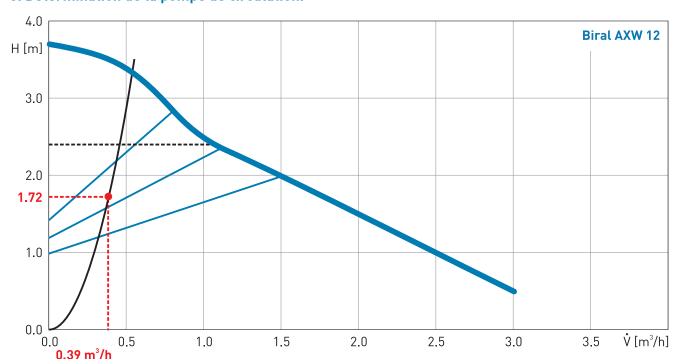
Total 122.6

Pression d'ouverture du clapet de retenue: 50 mbar (valeur moyenne admise)

Pression de la pompe: 50 mbar + 122.6 mbar = **172.6 mbar**

Il suffit de calculer la perte de charge du retour d'eau chaude! Avec les gros diamètres dans la distribution d'eau chaude aller et les faibles volumes dans le mode circulation, les valeurs sont si petites qu'elles peuvent être négligées!

Perte de charge (tronçons 1-10)


Objet: Exemple 2 Données: Fluide: Eau 55°C Calcul détaillé Densité: 985.73 kg/m³

Pertes de charge totales:

Boucle: Perte par tronçon

Tronçon	Dimension mm	Système	Long. m	Valeur Zeta	Débit l/s	Vitesse m/s	Perte de charge mbar
1	16 x 2.2	GF JRG Sanipex	10.5	3.2	0.01	0.09	1.3
2	16 x 2.2	GF JRG Sanipex	10.5	3.2	0.01	0.09	1.3
3	16 x 2.2	GF JRG Sanipex	10.5	3.2	0.01	0.09	1.3
4	16 x 2.2	GF JRG Sanipex	10.5	3.2	0.01	0.09	1.3
5	16 x 2.2	GF JRG Sanipex	10.5	3.2	0.01	0.09	1.3
6	16 x 2.2	GF JRG Sanipex	10.5	3.2	0.01	0.09	1.3
7	16 x 2.2	GF JRG Sanipex	10.5	3.2	0.01	0.09	1.3
8	16 x 2.2	GF JRG Sanipex	10.5	3.2	0.01	0.09	1.3
9	20 x 2.8	GF JRG Sanipex	10.5	4.1	0.02	0.12	2.5
10	20 x 2.8	GF JRG Sanipex	18.5	5.9	0.03	0.18	9.0

6. Détermination de la pompe de circulation.

Point rouge: point de calcul de la circulation.

7. Déterminer la perte de chaleur de chaque boucle de circulation.

Les températures de consigne des régulateurs individuels peuvent être calculées à l'aide des équations 6 et 7.

Elles sont nécessaires pour un éventuel préréglage des vannes de régulation de la circulation.

1	2	2	3	4	5	6
TS	· v	v	à	Diff. de temp.	Somme des dif.	Temp.
	l/h	m³/h	W (J/s)	K	K	°C
Chauffe-eau						60.00
TS 1	390.01	0.39	210	0.13	0.13	59.87
TS 2	335.84	0.34	112	0.08	0.21	59.79
TS 3	298.52	0.30	112	0.09	0.30	59.70
TS 4	261.21	0.26	112	0.10	0.40	59.60
TS 5	223.89	0.22	112	0.12	0.52	59.48
TS 6	186.58	0.19	112	0.14	0.66	59.34
TS 7	149.26	0.15	112	0.18	0.84	59.16
TS 8	111.95	0.11	112	0.24	1.08	58.92
TS 9	74.63	0.07	112	0.38	1.46	58.54
TS 10-13	37.32	0.04	217	1.30	2.76	57.24
Z 11	18.06	0.02	105	1.25	4.01	55.99
Z 10	19.26	0.02	112	1.34	4.10	55.90
Z 9	74.63	0.07	112	0.38	4.48	55.52
Z 8	111.95	0.11	112	0.24	4.72	55.28
Z 7	149.26	0.15	112	0.18	4.90	55.10
Z 6	186.58	0.19	112	0.14	5.04	54.96
Z 5	223.89	0.22	112	0.12	5.16	54.84
Z 4	261.21	0.26	112	0.10	5.26	54.74
Z 3	298.52	0.30	112	0.09	5.35	54.65
Z 2	335.84	0.34	112	0.08	5.43	54.57
Z 1	390.01	0.39	210	0.13	5.56	54.44

¹ Tronçon

La petite différence entre la différence de température calculée dans le système d'eau chaude de 5,56 Kelvin et l'hypothèse initiale de 5 Kelvin, peut être négligée!

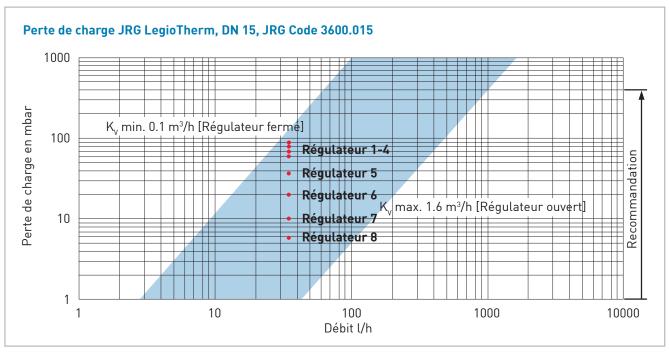
² Débit du tronçon

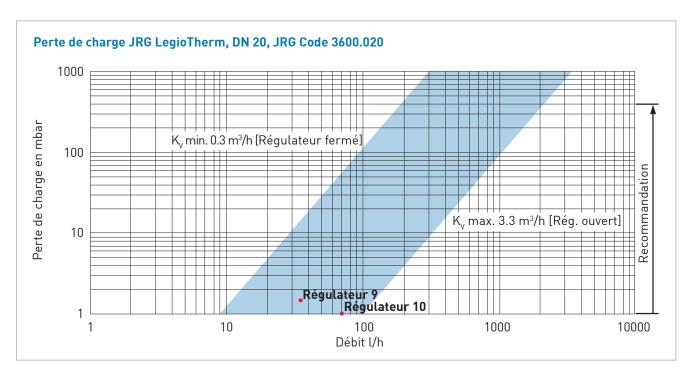
³ Pertes de chaleur du tronçon

⁴ Chute de température du tronçon (équation 6)

⁵ Somme des chutes de température des tronçons

⁶ Température à ce point de l'installation (équation 7)


8. Contrôle des vannes de régulation de circulation sélectionnées.


Pression différentielle par les vannes de régulation de circulation

1	2	3	4	5	6	7
Somme des tronçons	Perte de charge	Tronçon	Perte de charge	ST + tronçon	Différence de pression	Débit
	mbar		mbar	mbar	mbar	l/h
Z01-Z11	122.6			122.6	0.0	108.0
Z01-Z10	120.1					72.0
Z01-Z09	118.5	9	2.5	121.0	1.60	36.0
Z01-Z08	115.5	8	1.3	116.8	5.80	36.0
Z01-Z07	110.7	7	1.3	112.0	10.60	36.0
Z01-Z06	100.8	6	1.3	102.1	20.50	36.0
Z01-Z05	84.4	5	1.3	85.7	36.90	36.0
Z01-Z04	60.1	4	1.3	61.4	61.20	36.0
Z01-Z03	52.8	3	1.3	54.1	68.50	36.0
Z01-Z02	43.0	2	1.3	44.3	78.30	36.0
Z01	30.5	1	1.3	31.8	90.80	36.0

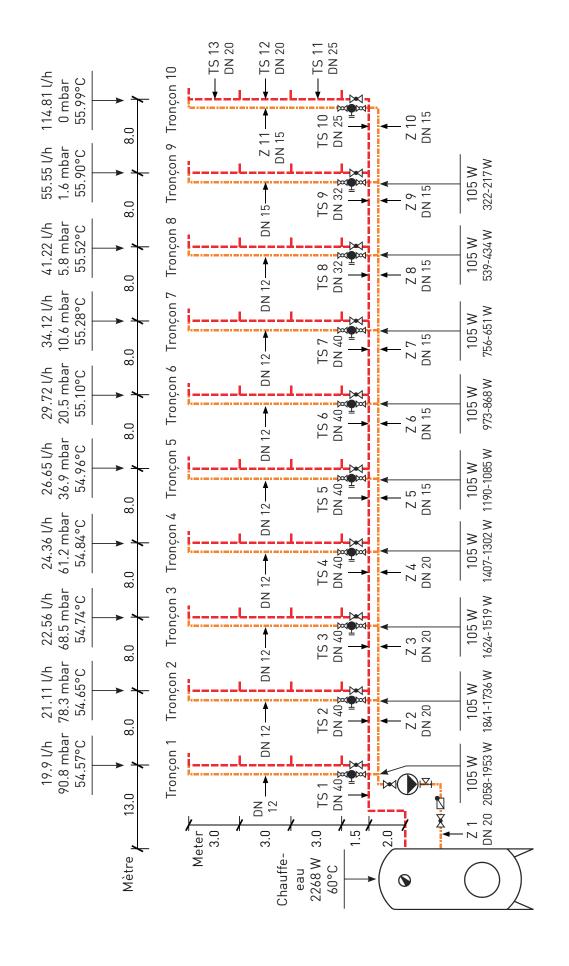
- 1 Somme des tronçons
- 2 Pertes de chaleur dans le retour de circulation
- Pertes de charge dans la boucle de circulation
- 4 Pertes de chaleur après le passage
- 5 Somme des pertes de charge tronçons respectifs
- 6 Différence de pression de à Z01-Z11 à compenser par la vanne de régulation de circulation
- 7 Volumenstrom über Zirkulationsregulierventil

Avec le débit volumétrique et la perte de charge des différentes sections, il est maintenant possible de vérifier dans le diagramme de la vanne de régulation de circulation correspondante si les valeurs sont conformes à la valeur recommandée.

Vous pouvez également utiliser l'équation 8 pour calculer la valeur kV de la vanne de régulation de la circulation. Cette valeur calculée doit également être dans la plage de contrôle de la vanne!

Valeur kV des régulateurs de circulation

8	9	10	11	12
Tronçon	Ů	Ÿ	Différence de pression	k _v
	l/h	m³/h	mbar	m³/h
1	36.0	0.036	90.8	0.12
2	36.0	0.036	78.3	0.13
3	36.0	0.036	68.5	0.14
4	36.0	0.036	61.2	0.15
5	36.0	0.036	36.9	0.19
6	36.0	0.036	20.5	0.25
7	36.0	0.036	10.6	0.35
8	36.0	0.036	5.8	0.47
9	72.0	0.072	1.6	1.80
10	108.0	0.108	0.0	


9/10 Débit à travers la vanne de régulation de circulation

- Si la valeur kV est trop grande pour la vanne sélectionnée, la dimension immédiatement supérieure doit être utilisée!
- Si la valeur kV est trop petite pour la vanne sélectionnée et qu'il n'y a pas de vanne plus petite, une perte de pression supplémentaire doit être générée dans ce tronçon! (dimension de tube plus petites, ou pré-régulation avec une vanne de régulation de circulation mécanique)

Différence de pression à compenser par la vanne de régulation de circulation

¹² Valeur kV de la vanne de régulation de la circulation (équation 8)

Valeurs de réglage des régulateurs de circulation

Pertes de charge dans les pièces du système JRG Sanipex (Eau 10°C)

Art. N°	Désignation		Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
5400 5401 5402	Boîte simple Sanip	ex à 90°		1/2"-d12 1/2"-d16 1/2"-d20 3/4"-d20	1.2 1.2 1.2 1.5	0.35 0.55 0.70 0.95
5404	Boîte double	Sortie		1/2"-d16-d12 1/2"-d16-d16 1/2"-d20-d16	2.3 2.4 2.9	0.83 1.10 1.80
	Sanipex à 90°	Passage		1/2"-d16-d12 1/2"-d16-d16 1/2"-d20-d16	1.3 1.4 1.0	0.45 0.60 0.65
5415	Raccord de robinet	terie simple	Щ	1/2"-d12-35mm 1/2"-d16-35mm 1/2"-d20-35mm 1/2"-d20-50mm	2.1 2.2 3.0 2.1	0.60 1.05 1.85 1.30
5416	Raccord de robinetterie double	Sortie Passage		1/2"-d16-50mm 1/2"-d16-50mm	2.6 2.0	1.20 0.90
5421 - 5427	Distributeur y c. raccord	Sortie	<u> </u>	3/4"-d12 3/4"-d16 3/4"-d20	1.2 1.0 0.8	0.35 0.45 0.50
		Passage		3/4"	0.5	0.35
5520 - 5525	Coude à 90°			d12 d16 d20	2.7 0.8 0.9	0.75 0.35 0.55
5463 - 5471	Té (égal et réduit)	Passage	V ↑ →	d12 d16 d20	2.4 0.4 0.7	0.65 0.20 0.45
5463 - 5471	Té (égal et réduit)	Dérivation	<u>↑</u>	d12 d16 d20	3.4 1.2 1.6	0.95 0.55 1.00
5510	Union		+	d12 d16 d20	1.8 0.3 0.3	0.50 0.15 0.20

Les valeurs ont été déterminées conformément aux exigences de la SSIGE (SN EN 1267).

JRG Sanipex (10°C)

Druckverlustdiagramm für Sanipex Rohre:

Rohrreibungsdruckgefälle in Abhängigkeit vom Volumenstrom

Berechnungsgrundlage:

Wassertemperatur = 10° C

Oberflächenrauigkeit k = 0.007 mmViskosität = 0.00131 Pa·sDichte ρ = 999.70 kg/m^3

Empfohlene Fliessgeschwindigkeit nach SVGW Richtlinie W3/2013:

max. 4.0 m/s für Ausstossleitungen max. 3.0 m/s für Apparategruppen max. 3.0 m/s für Stockwerksverteilungen max. 2.0 m/s für Verteilleitungen

Diagramme des pertes de charge dans les tuyaux Sanipex:

Perte de charge par frottement dépendant du débit volumique:

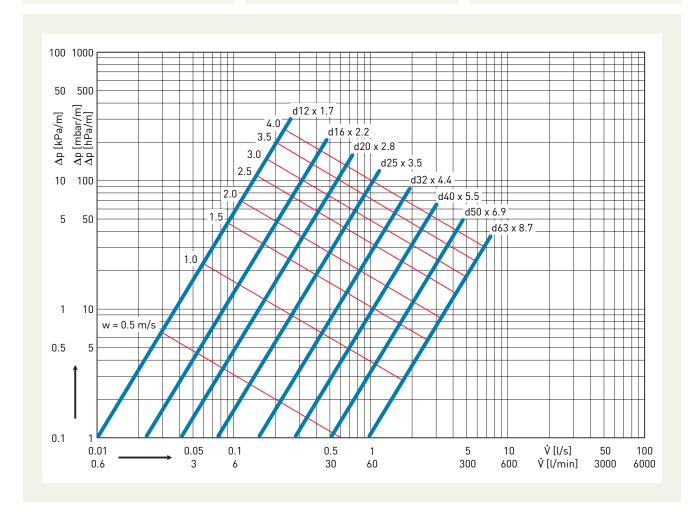
Base de calcul:

Température d'eau = 10° C Rugosité des parois k = 0.007 mm Viscosité = 0.00131 Pa·s Densité ρ = 999.70 kg/m³

Débit recommandé pour la politique SSIGE W3/2013:

max. 4.0 m/s pour conduite d'évacuation max. 3.0 m/s pour groupe d'appareils max. 3.0 m/s pour distribution d'étage max. 2.0 m/s pour conduite de distribution

Diagramma della perdita di carico per tubi Sanipex:


Caduta di pressione per attrito del tubo a dipendenza del flusso volumetrico:

Base di calcolo:

Temperatura d'acqua = 10° C Rugosità del tubo k = 0.007 mmViscosità = 0.00131 Pa·sDensità ρ = 999.70 kg/m^3

Portata consigliata dal SSIGA politica W3/2013:

max. 4.0 m/s per linie di getto max. 3.0 m/s per gruppi di apparecchiature max. 3.0 m/s per linie di piano max. 2.0 m/s per linie di distribuzione

d DN	1	12		16		20		25 20		32		10 32		50 10		63 60
Vs	v	R	٧	R	v	R	٧	R	٧	R	٧	R	٧	R	٧	R
[l/s]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]
0.01	0.2	1.0	0.1	0.2	0.1	0.1	0.4	0.4								
0.02 0.03	0.3	3.3 6.8	0.2	0.8 1.6	0.1	0.3	0.1	0.1								
0.04	0.7	11.3	0.4	2.7	0.2	1.0	0.1	0.3								
0.05	0.9	16.7	0.5	4.0	0.3	1.4	0.2	0.5	0.1	0.1						
0.06	1.0	23.0	0.6	5.5	0.4	1.9	0.2	0.7	0.1	0.2	0.1	0.1				
0.07	1.2	30.2	0.7	7.2	0.4	2.5	0.3	0.9	0.2	0.3	0.1	0.1				
0.08	1.4	38.2	0.8	9.1	0.5	3.2	0.3	1.1	0.2	0.3	0.1	0.1				
0.09 0.10	1.5	46.9 56.5	0.9	11.2 13.4	0.6	4.0	0.4	1.4	0.2	0.4	0.1	0.1	0.1	0.1		
0.15	2.6	115.1	1.4	27.4	0.0	9.7	0.6	3.3	0.4	1.0	0.2	0.3	0.1	0.1		
0.20	3.4	190.8	1.9	45.3	1.2	16.1	0.8	5.5	0.5	1.6	0.3	0.6	0.2	0.2	0.1	0.1
0.25	4.3	282.3	2.4	67.1	1.5	23.8	1.0	8.1	0.6	2.4	0.4	0.8	0.2	0.3	0.2	0.1
0.30	5.2	388.8	2.8	92.4	1.8	32.7	1.2	11.2	0.7	3.3	0.5	1.1	0.3	0.4	0.2	0.1
0.35			3.3	121.1 153.1	2.1	42.9	1.4	14.7	0.8	4.3	0.5	1.5	0.3	0.5	0.2	0.2
0.40 0.45			4.3	188.3	2.5 2.8	54.2 66.7	1.6 1.8	18.6 22.8	0.9 1.1	5.5 6.8	0.6	1.9	0.4	0.8	0.2	0.2
0.50			4.7	226.6	3.1	80.2	2.0	27.5	1.2	8.1	0.8	2.8	0.5	1.0	0.3	0.3
0.55			5.2	267.9	3.4	94.9	2.2	32.5	1.3	9.6	0.8	3.3	0.5	1.1	0.3	0.4
0.60					3.7	110.5	2.4	37.9	1.4	11.2	0.9	3.8	0.6	1.3	0.4	0.4
0.65					4.0	127.2	2.6	43.6	1.5	12.9	1.0	4.4	0.6	1.5	0.4	0.5
0.70					4.3	144.9	2.8	49.6	1.7	14.7	1.1	5.0	0.7	1.7	0.4	0.6
0.75 0.80					4.6 4.9	163.5 183.1	2.9 3.1	56.0 62.7	1.8 1.9	16.6 18.6	1.1	5.7 6.4	0.7	2.0	0.5	0.6
0.85					5.2	203.7	3.3	69.8	2.0	20.6	1.3	7.1	0.8	2.4	0.5	0.8
0.90							3.5	77.1	2.1	22.8	1.4	7.8	0.9	2.7	0.6	0.9
0.95							3.7	84.8	2.2	25.1	1.4	8.6	0.9	3.0	0.6	1.0
1.00							3.9	92.8	2.4	27.4	1.5	9.4	1.0	3.2	0.6	1.1
1.05							4.1	101.1	2.5	29.9	1.6	10.2	1.0	3.5	0.6	1.2
1.10 1.15									2.6 2.7	32.4 35.1	1.7	11.1 12.0	1.1	3.8 4.1	0.7	1.3 1.4
1.20									2.8	37.8	1.8	12.9	1.2	4.5	0.7	1.5
1.25									3.0	40.6	1.9	13.9	1.2	4.8	0.8	1.6
1.30									3.1	43.5	2.0	14.9	1.3	5.1	0.8	1.7
1.35									3.2	46.5	2.0	15.9	1.3	5.5	0.8	1.8
1.40									3.3	49.6	2.1	17.0	1.4	5.9	0.9	1.9
1.45 1.50									3.4	52.7 55.9	2.2	18.1 19.2	1.4	6.2	0.9	2.1
1.55									3.7	59.3	2.3	20.3	1.5	7.0	0.9	2.3
1.60									3.8	62.6	2.4	21.5	1.6	7.4	1.0	2.4
1.65									3.9	66.1	2.5	22.7	1.6	7.8	1.0	2.6
1.70									4.0	69.7	2.6	23.9	1.7	8.2	1.0	2.7
1.75											2.6	25.1	1.7	8.7	1.1	2.9 3.0
1.80 1.85											2.8	26.4 27.7	1.8	9.1 9.5	1.1	3.2
1.90											2.9	29.0	1.8	10.0	1.2	3.3
1.95											3.0	30.4	1.9	10.5	1.2	3.5
2.00											3.0	31.8	1.9	10.9	1.2	3.6
2.10													2.0	11.9	1.3	3.9
2.20													2.1	12.9 14.0	1.3	4.3 4.6
2.30 2.40													2.2	15.1	1.4	5.0
2.50													2.4	16.2	1.5	5.3
2.60													2.5	17.4	1.6	5.7
2.70													2.6	18.5	1.7	6.1
2.80													2.7	19.8	1.7	6.5
2.90 3.00													2.8	21.0 22.3	1.8	6.9 7.4
3.10													3.0	23.6	1.9	7.4
3.20															2.0	8.2
3.30															2.0	8.7
3.40															2.1	9.2
3.50															2.1	9.7
3.60 3.70															2.2	10.1 10.6
3.80															2.3	11.2
3.90															2.4	11.7
4.00															2.4	12.2
4.10															2.5	12.7
4.20															2.6	13.3
4.30 4.40															2.6	13.9 14.4
4.40															2.7	14.4
4.60															2.8	15.6
4.70															2.9	16.2
4.80															2.9	16.8
4.90	1	1													3.0	17.4

JRG Sanipex (60°C)

Druckverlustdiagramm für Sanipex Rohre:

Rohrreibungsdruckgefälle in Abhängigkeit vom Volumenstrom

Berechnungsgrundlage:

Wassertemperatur = 60° C Oberflächenrauigkeit k = 0.007 mm Viskosität = 0.00013 Pa·s Dichte ρ = 983.19 kg/m³

Empfohlene Fliessgeschwindigkeit nach SVGW Richtlinie W3/2013:

max. 4.0 m/s für Ausstossleitungen max. 3.0 m/s für Apparategruppen max. 3.0 m/s für Stockwerksverteilungen max. 2.0 m/s für Verteilleitungen

Diagramme des pertes de charge dans les tuyaux Sanipex:

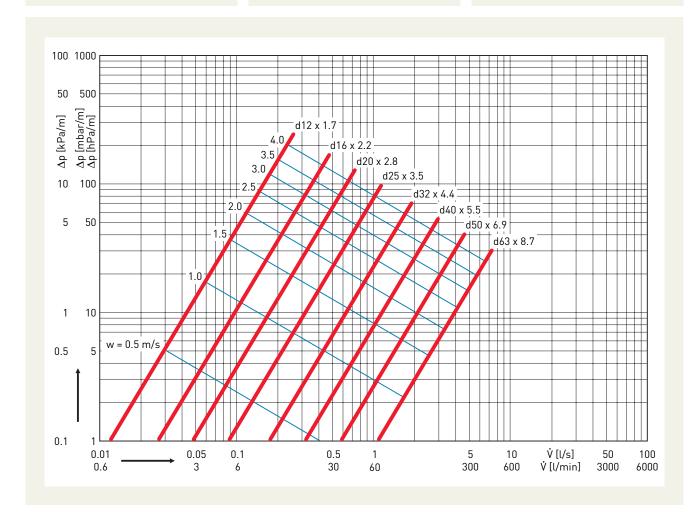
Perte de charge par frottement dépendant du débit volumique:

Base de calcul:

Température d'eau = 60°C Rugosité des parois k = 0.007 mm Viscosité = 0.00013 Pa·s Densité ρ = 983.19 kg/m³

Débit recommandé pour la politique SSIGE W3/2013:

max. 4.0 m/s pour conduite d'évacuation max. 3.0 m/s pour groupe d'appareils max. 3.0 m/s pour distribution d'étage max. 2.0 m/s pour conduite de distribution


Diagramma della perdita di carico per tubi Sanipex:

Caduta di pressione per attrito del tubo a dipendenza del flusso volumetrico:

Base di calcolo:

Temperatura d'acqua $= 60^{\circ}$ CRugosità del tubo k= 0.007 mmViscosità= 0.00013 Pa·sDensità ρ $= 983.19 \text{ kg/m}^3$

Portata consigliata dal SSIGA politica W3/2013:

d	1	12	1	16	2	20	2	25	3	32		10	5	0	6	33
DN		8		2		5		20		25		32		0		50
Vs	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R
[l/s]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]
0.01	0.2	0.7	0.1	0.2	0.1	0.1	0.1	0.4								
0.02	0.3	2.5 5.1	0.2	0.6 1.2	0.1	0.2	0.1	0.1								
0.04	0.7	8.6	0.4	2.0	0.2	0.7	0.2	0.2	0.1	0.1						
0.05	0.9	12.8	0.5	3.0	0.3	1.1	0.2	0.4	0.1	0.1						
0.06	1.0	17.7	0.6	4.2	0.4	1.5	0.2	0.5	0.1	0.1	0.1	0.1				
0.07	1.2	23.3	0.7	5.5	0.4	1.9	0.3	0.7	0.2	0.2	0.1	0.1				
0.08	1.4	29.5 36.4	0.8	7.0 8.6	0.5	2.5 3.0	0.3	0.8 1.0	0.2	0.2	0.1	0.1				
0.10	1.7	43.9	0.9	10.4	0.6	3.7	0.4	1.3	0.2	0.4	0.1	0.1				
0.15	2.6	90.5	1.4	21.4	0.9	7.6	0.6	2.6	0.4	0.8	0.2	0.3	0.1	0.1		
0.20	3.4	151.1	1.9	35.8	1.2	12.6	0.8	4.3	0.5	1.3	0.3	0.4	0.2	0.1		
0.25	4.3	224.9	2.4	53.2	1.5	18.8	1.0	6.4	0.6	1.9	0.4	0.6	0.2	0.2	0.2	0.1
0.30 0.35	5.2	311.3	2.8	73.7 97.0	1.8 2.1	26.0 34.2	1.2	8.9 11.7	0.7	2.6 3.4	0.5	0.9 1.2	0.3	0.3	0.2	0.1
0.40			3.8	123.0	2.1	43.4	1.6	14.8	0.0	4.4	0.6	1.5	0.3	0.4	0.2	0.1
0.45			4.3	151.8	2.8	53.6	1.8	18.3	1.1	5.4	0.7	1.8	0.4	0.6	0.3	0.2
0.50			4.7	183.1	3.1	64.6	2.0	22.1	1.2	6.5	0.8	2.2	0.5	0.8	0.3	0.3
0.55			5.2	217.0	3.4	76.6	2.2	26.2	1.3	7.7	0.8	2.6	0.5	0.9	0.3	0.3
0.60					3.7	89.5	2.4	30.6	1.4	9.0	0.9	3.1	0.6	1.1	0.4	0.3
0.65 0.70					4.0	103.2 117.7	2.6	35.2 40.2	1.5	10.4	1.0	3.5 4.0	0.6	1.2	0.4	0.4
0.75					4.6	133.2	2.9	45.5	1.8	13.4	1.1	4.6	0.7	1.6	0.4	0.5
0.80					4.9	149.4	3.1	51.0	1.9	15.0	1.2	5.1	0.8	1.8	0.5	0.6
0.85					5.2	166.4	3.3	56.8	2.0	16.7	1.3	5.7	0.8	2.0	0.5	0.6
0.90							3.5	62.9	2.1	18.5	1.4	6.3	0.9	2.2	0.6	0.7
0.95 1.00							3.7	69.3	2.2	20.4	1.4	7.0	0.9	2.4	0.6	0.8
1.05							4.1	75.9 82.8	2.5	24.4	1.5	7.6 8.3	1.0	2.6	0.6	0.9
1.10							7.1	02.0	2.6	26.5	1.7	9.1	1.1	3.1	0.7	1.0
1.15									2.7	28.7	1.7	9.8	1.1	3.4	0.7	1.1
1.20									2.8	31.0	1.8	10.6	1.2	3.6	0.7	1.2
1.25									3.0	33.3	1.9	11.4	1.2	3.9	0.8	1.3
1.30 1.35									3.1	35.7 38.2	2.0	12.2 13.0	1.3	4.2 4.5	0.8	1.4
1.40									3.3	40.7	2.1	13.9	1.4	4.8	0.9	1.6
1.45									3.4	43.4	2.2	14.8	1.4	5.1	0.9	1.7
1.50									3.5	46.1	2.3	15.7	1.5	5.4	0.9	1.8
1.55									3.7	48.8	2.3	16.7	1.5	5.7	0.9	1.9
1.60 1.65									3.8	51.7 54.6	2.4	17.7 18.6	1.6 1.6	6.1	1.0	2.0
1.70									4.0	57.6	2.6	19.7	1.7	6.8	1.0	2.2
1.75											2.6	20.7	1.7	7.1	1.1	2.3
1.80											2.7	21.8	1.7	7.5	1.1	2.5
1.85											2.8	22.9	1.8	7.9	1.1	2.6
1.90 1.95											2.9 3.0	24.0 25.1	1.8 1.9	8.2 8.6	1.2	2.7
2.00											3.0	26.3	1.9	9.0	1.2	3.0
2.10													2.0	9.9	1.3	3.2
2.20													2.1	10.7	1.3	3.5
2.30													2.2	11.6	1.4	3.8
2.40													2.3	12.5 13.4	1.5	4.1 4.4
2.50 2.60													2.4	13.4	1.5	4.4
2.70													2.6	15.4	1.7	5.1
2.80													2.7	16.4	1.7	5.4
2.90													2.8	17.5	1.8	5.8
3.00													2.9 3.0	18.6 19.7	1.8	6.1
3.10 3.20													3.0	19./	2.0	6.5
3.30															2.0	7.3
3.40															2.1	7.6
3.50															2.1	8.1
3.60															2.2	8.5
3.70 3.80															2.3	8.9 9.3
3.90															2.4	9.8
4.00															2.4	10.2
4.10															2.5	10.7
4.20															2.6	11.1
4.30															2.6	11.6
4.40 4.50															2.7	12.1 12.6
4.60															2.8	13.1
4.70															2.9	13.6
4.80															2.9	14.1
4.90			<u> </u>				<u> </u>		<u> </u>				l		3.0	14.7

Pertes de charge dans les pièces du système JRG Sanipex MT (Eau 10°C)

Art. N°	Désignation		Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
4630	Boîte simple Sanip	ex MT à 90°		1/2"-d16 1/2"-d20 3/4"-d20	1.3 1.3 1.6	0.55 0.85 1.00
4634	Boîte double Sanipex MT à 90°	Sortie Passage		1/2"-d16-d16 1/2"-d20-d16 1/2"-d16-d16 1/2"-d20-d16	4.0 3.2 1.5 0.7	1.85 1.70 0.70 0.35
4610	Raccord de robinetterie simple		Г	1/2"-d16-35mm 1/2"-d20-35mm 1/2"-d20-50mm 3/4"-d26-50mm	3.0 3.3 2.1 1.7	1.35 2.10 1.30 1.35
4611	Raccord de robinetterie double	Sortie Passage		1/2"-d16-50mm 1/2"-d16-50mm	2.7 2.1	1.25 0.95
4640 4645	Distributeur y c. raccord	Sortie Passage	<u> </u>	3/4"-d16 3/4"-d20 3/4"	1.0 0.8 0.5	0.45 0.50 0.35
4670 4671 4672	Equerre à 90°	Equerre à 90°		d16 d20 d26 d32 d40 d50 d63	2.1 1.9 1.8 1.7 1.6 0.8 0.9	0.95 1.25 1.60 1.95 2.45 1.80 2.60
4676	Equerre à 45°			d20 d26 d32 d40 d50 d63	0.7 0.6 0.6 0.6 0.4 0.5	0.40 0.55 0.65 0.85 0.95 1.30

Les valeurs ont été déterminées conformément aux exigences de la SSIGE (SN EN 1267).

Pertes de charge dans les pièces du système JRG Sanipex MT (Eau 10°C)

Art. N°	Désignation	Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
			d16	0.1	0.05
			d20	0.1	0.06
			d26	0.1	0.09
	Cintre à 90° avec outil à main	(d32	0.1	0.10
			d40	0.1	0.12
			d50	0.1	0.15
			d63	0.1	0.20
			d16	0.1	0.05
			d20	0.1	0.06
			d26	0.1	0.09
	Cintre à 45° avec outil à main		d32	0.1	0.10
			d40	0.1	0.12
			d50	0.1	0.15
			d63	0.1	0.20
			d16	0.5	0.20
4050			d20	0.5	0.30
4650		∨ ↑	d26	0.3	0.25
4652 4654	Té (égal et réduit) Passage	<u> </u>	d32	0.2	0.25
4655		A	d40	0.3	0.50
.000			d50	0.2	0.45
			d63	0.3	0.75
			d16	2.4	1.10
40=0			d20	2.1	1.35
4650		A I .∨	d26	1.9	1.70
4652 4654	Té (égal et réduit) Dérivation	 	d32	1.8	2.05
4655		↑	d40	1.7	2.65
.000			d50	1.2	2.45
			d63	1.2	3.35
			d16	0.3	0.10
			d20	0.3	0.20
			d26	0.4	0.35
4690	Union		d32	0.5	0.50
			d40	0.5	0.75
			d50	1.2	2.45
			d63	1.2	3.20

Les valeurs ont été déterminées conformément aux exigences de la SSIGE (SN EN 1267).

Pertes de charge dans les pièces du système JRG Sanipex MT (Eau 10°C)

Art. N°	Désignation	Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
			d20	0.2	0.10
			d26	0.2	0.15
4730	Réduction	—	d32	0.1	0.15
4730	Reduction		d40	0.2	0.30
			d50	0.4	0.80
			d63	0.5	1.35

JRG Sanipex MT (10°C)

Druckverlustdiagramm für Sanipex MT Rohre:

Rohrreibungsdruckgefälle in Abhängigkeit vom Volumenstrom

Berechnungsgrundlage:

Wassertemperatur = 10° C

Oberflächenrauigkeit k = 0.007 mm

Viskosität = 0.00131 Pa·s

Dichte ρ = 999.70 kg/m³

Empfohlene Fliessgeschwindigkeit nach SVGW Richtlinie W3/2013:

max. 4.0 m/s für Ausstossleitungen max. 3.0 m/s für Apparategruppen max. 3.0 m/s für Stockwerksverteilungen max. 2.0 m/s für Verteilleitungen

Diagramme des pertes de charge dans les tuyaux Sanipex MT:

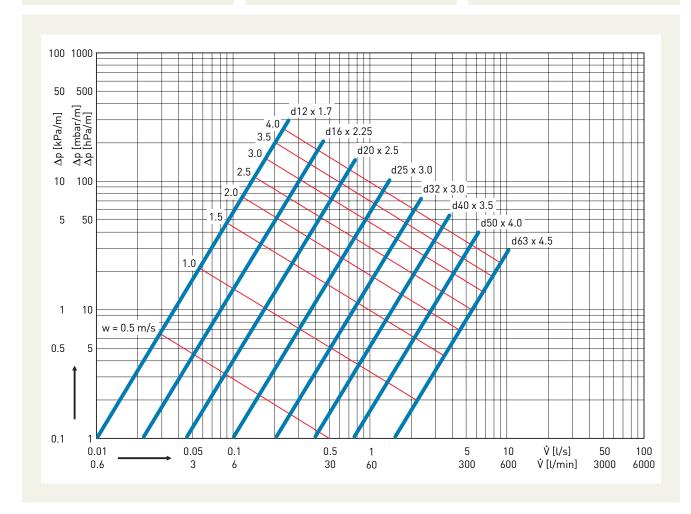
Perte de charge par frottement dépendant du débit volumique:

Base de calcul:

Température d'eau = 10° C Rugosité des parois k = 0.007 mm Viscosité = 0.00131 Pa·s Densité ρ = 999.70 kg/m³

Débit recommandé pour la politique SSIGE W3/2013:

max. 4.0 m/s pour conduite d'évacuation max. 3.0 m/s pour groupe d'appareils max. 3.0 m/s pour distribution d'étage max. 2.0 m/s pour conduite de distribution


Diagramma della perdita di carico per tubi Sanipex MT:

Caduta di pressione per attrito del tubo a dipendenza del flusso volumetrico:

Base di calcolo:

Temperatura d'acqua= 10°CRugosità del tubo k= 0.007 mmViscosità= 0.00131 Pa·sDensità ρ = 999.70 kg/m³

Portata consigliata dal SSIGA politica W3/2013:

, , , d DN		12		16 1 2		20		26 20		32 25		10 3 2		50 10		63 50
Vs	V	R	٧	R	٧	R	٧	R	V	R	٧	R	٧	R	V	R
[l/s]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]
0.01 0.02	0.2	1.0 3.3	0.1	0.2	0.1	0.1	0.1	0.1								
0.03	0.5	6.8	0.3	1.7	0.2	0.5	0.1	0.1								
0.04 0.05	0.7	11.3	0.4	2.8 4.1	0.2	0.8	0.1	0.2	0.1	0.1						
0.06	0.9 1.0	16.7 23.0	0.5	5.7	0.3	1.2 1.6	0.2	0.3	0.1	0.1						
0.07	1.2	30.2	0.7	7.5	0.4	2.1	0.2	0.5	0.1	0.1						
0.08	1.4	38.2	0.8	9.5	0.5	2.6	0.3	0.7	0.2	0.2	0.1	0.1				
0.09 0.10	1.5 1.7	46.9 56.5	0.9 1.0	11.6 14.0	0.5	3.2 3.9	0.3	0.8 1.0	0.2	0.2	0.1	0.1				
0.15	2.6	115.1	1.4	28.5	0.8	8.0	0.5	2.0	0.3	0.6	0.2	0.2	0.1	0.1		
0.20	3.4	190.8	1.9	47.3	1.1	13.2	0.6	3.3	0.4	0.9	0.2	0.3	0.1	0.1		
0.25 0.30	4.3 5.2	282.3 388.8	2.4	69.9 96.3	1.4	19.5 26.9	0.8 1.0	4.9 6.8	0.5	1.4	0.3	0.4	0.2	0.1	0.1	0.1
0.35	0.2	000.0	3.4	126.3	2.0	35.3	1.1	8.9	0.7	2.5	0.4	0.8	0.3	0.3	0.2	0.1
0.40			3.9	159.6	2.3	44.6	1.3	11.2	0.8	3.2	0.5	1.0	0.3	0.3	0.2	0.1
0.45 0.50			4.3 4.8	196.3 236.2	2.5	54.8 66.0	1.4 1.6	13.8 16.6	0.8	3.9 4.7	0.5	1.2 1.5	0.3	0.4	0.2	0.1
0.55			1.0	200.2	3.1	78.0	1.8	19.6	1.0	5.6	0.6	1.8	0.4	0.6	0.2	0.2
0.60					3.4	90.8	1.9	22.8	1.1	6.5	0.7	2.1	0.4	0.6	0.3	0.2
0.65 0.70					3.7 4.0	104.6 119.1	2.1	26.3 29.9	1.2	7.5 8.5	0.8	2.4	0.5 0.5	0.7	0.3	0.2
0.75					4.2	134.4	2.4	33.8	1.4	9.6	0.9	3.1	0.5	1.0	0.3	0.3
0.80					4.5	150.5	2.5	37.8	1.5	10.7	0.9	3.4	0.6	1.1	0.3	0.3
0.85 0.90					4.8	167.5	2.7 2.9	42.1 46.5	1.6 1.7	11.9 13.2	1.0	3.8 4.2	0.6	1.2	0.4	0.4
0.95							3.0	51.2	1.8	14.5	1.1	4.6	0.6	1.5	0.4	0.4
1.00							3.2	56.0	1.9	15.9	1.2	5.1	0.7	1.6	0.4	0.5
1.05 1.10							3.3	61.0 66.2	2.0	17.3 18.8	1.2	5.5 6.0	0.8	1.7 1.9	0.5 0.5	0.5
1.10							3.5	71.5	2.1	20.3	1.3	6.5	0.8	2.0	0.5	0.6
1.20							3.8	77.1	2.3	21.9	1.4	7.0	0.9	2.2	0.5	0.7
1.25 1.30							4.0	82.8	2.4	23.5 25.2	1.5 1.5	7.5 8.0	0.9	2.4	0.5	0.7
1.35									2.5	26.9	1.6	8.6	1.0	2.7	0.6	0.8
1.40									2.6	28.7	1.6	9.1	1.0	2.9	0.6	0.9
1.45 1.50									2.7	30.5 32.4	1.7	9.7 10.3	1.0	3.1 3.2	0.6	0.9 1.0
1.55									2.9	34.3	1.8	10.9	1.1	3.4	0.7	1.0
1.60									3.0	36.3	1.9	11.5	1.2	3.6	0.7	1.1
1.65 1.70									3.1	38.3	1.9 2.0	12.2 12.8	1.2 1.2	3.8 4.0	0.7	1.1
1.75											2.0	13.5	1.3	4.2	0.8	1.3
1.80											2.1	14.2	1.3	4.5	0.8	1.3
1.85 1.90											2.2	14.9 15.6	1.3 1.4	4.7 4.9	0.8	1.4
1.95											2.3	16.3	1.4	5.1	0.9	1.5
2.00											2.3	17.1	1.4	5.4	0.9	1.6
2.10 2.20											2.5	18.6 20.2	1.5 1.6	5.8 6.3	0.9 1.0	1.7 1.9
2.30											2.7	21.8	1.7	6.9	1.0	2.1
2.40											2.8	23.5	1.7	7.4	1.0	2.2
2.50 2.60											2.9 3.0	25.3 27.1	1.8 1.9	7.9 8.5	1.1	2.4
2.70											3.0	27.1	1.9	9.1	1.1	2.7
2.80													2.0	9.7	1.2	2.9
2.90													2.1	10.3 10.9	1.3	3.1
3.00 3.10													2.2	11.6	1.3	3.5
3.20													2.3	12.2	1.4	3.7
3.30													2.4	12.9	1.4	3.9
3.40 3.50													2.5 2.5	13.6 14.3	1.5 1.5	4.1
3.60													2.6	15.1	1.6	4.5
3.70 3.80													2.7	15.8 16.6	1.6	4.7 5.0
3.80													2.7	17.3	1.7 1.7	5.0
4.00													2.9	18.1	1.7	5.4
4.10 4.20													3.0	18.9 19.7	1.8	5.7 5.9
4.20													3.0	20.6	1.8	6.2
4.40															1.9	6.4
4.50															2.0	6.7
4.60 4.70															2.0	6.9 7.2
4.80															2.1	7.5
4.90															2.1	7.7
5.00 5.10															2.2	8.0 8.3
5.20															2.3	8.6
5.30															2.3	8.9
5.40 5.50															2.4	9.2 9.5
5.60															2.4	9.8
5.70															2.5	10.1
5.80 5.90															2.5	10.4 10.7
6.00															2.6	11.0
6.10															2.7	11.4
6.20 6.30															2.7	11.7 12.0
6.40															2.8	12.4
6.50															2.8	12.7
6.60 6.70															2.9	13.1 13.4
6.80															3.0	13.8
6.90															3.0	14.1
7.00															3.1	14.5

JRG Sanipex MT (60°C)

Druckverlustdiagramm für Sanipex MT Rohre:

Rohrreibungsdruckgefälle in Abhängigkeit vom Volumenstrom

Berechnungsgrundlage:

Wassertemperatur = 60°C Oberflächenrauigkeit k = 0.007 mm Viskosität = 0.00013 Pa·s Dichte ρ = 983.19 kg/m³

Empfohlene Fliessgeschwindigkeit nach SVGW Richtlinie W3/2013:

max. 4.0 m/s für Ausstossleitungen max. 3.0 m/s für Apparategruppen max. 3.0 m/s für Stockwerksverteilungen max. 2.0 m/s für Verteilleitungen

Diagramme des pertes de charge dans les tuyaux Sanipex MT:

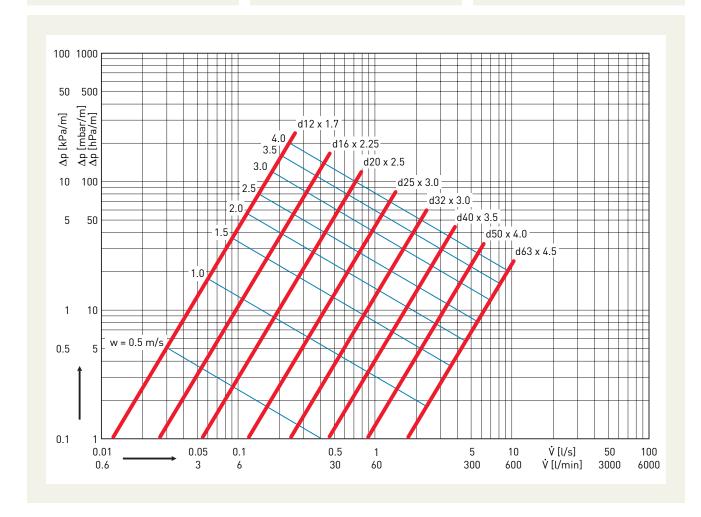
Perte de charge par frottement dépendant du débit volumique:

Base de calcul:

Température d'eau = 60°C Rugosité des parois k = 0.007 mm Viscosité = 0.00013 Pa·s Densité ρ = 983.19 kg/m³

Débit recommandé pour la politique SSIGE W3/2013:

max. 4.0 m/s pour conduite d'évacuation max. 3.0 m/s pour groupe d'appareils max. 3.0 m/s pour distribution d'étage max. 2.0 m/s pour conduite de distribution


Diagramma della perdita di carico per tubi Sanipex MT:

Caduta di pressione per attrito del tubo a dipendenza del flusso volumetrico:

Base di calcolo:

Temperatura d'acqua= 60°CRugosità del tubo k= 0.007 mmViscosità= 0.00013 Pa·sDensità ρ = 983.19 kg/m³

Portata consigliata dal SSIGA politica W3/2013:

d	1	12	1	16	2	20	2	16	3	32	2	10	5	60		63
DN		8	1	2	1	5	2	0	2	25	3	32	4	0	ŧ	50
Vs [l/s]	V [m/s]	R [hPa/m]	V [m/s]	R [hPa/m]	V [m/s]	R [hPa/m]	V [m/s]	R [hPa/m]	V [m/s]	R [hPa/m]	V [m/s]	R [hPa/m]	V [m/s]	R [hPa/m]	V [m/s]	R [hPa/m]
0.01	0.2	0.7	0.10	0.2												
0.02 0.03	0.3	2.5 5.1	0.19	0.6 1.3	0.11	0.2	0.10	0.1								
0.04	0.7	8.6	0.39	2.1	0.23	0.6	0.13	0.1								
0.05 0.06	0.9 1.0	12.8 17.7	0.48	3.2 4.4	0.28	0.9 1.2	0.16 0.19	0.2	0.09	0.1						
0.07	1.2	23.3	0.67	5.7	0.40	1.6	0.22	0.4	0.13	0.1						
0.08	1.4	29.5 36.4	0.77	7.3 9.0	0.45	2.0	0.25	0.5	0.15	0.1	0.11	0.1				
0.10	1.7	43.9	0.96	10.8	0.57	3.0	0.32	0.8	0.19	0.2	0.12	0.1				
0.15 0.20	2.6 3.4	90.5 151.1	1.44	22.3 37.3	0.85 1.13	6.2 10.4	0.48	1.6 2.6	0.28	0.4	0.18	0.1	0.14	0.1		
0.25	4.3	224.9	2.41	55.5	1.41	15.4	0.80	3.9	0.47	1.1	0.29	0.3	0.18	0.1		
0.30 0.35	5.2	311.3	2.89 3.37	76.8 101.1	1.70 1.98	21.4	0.95 1.11	5.3 7.0	0.57	1.5 2.0	0.35	0.5	0.22	0.2	0.15	0.1
0.40			3.85	128.3	2.26	35.7	1.27	8.9	0.75	2.5	0.47	8.0	0.29	0.3	0.17	0.1
0.45 0.50			4.33 4.81	158.2 190.9	2.55 2.83	44.0 53.1	1.43 1.59	11.0 13.3	0.85 0.94	3.1 3.8	0.53	1.0	0.32	0.3	0.20	0.1 0.1
0.55			4.01	130.3	3.11	62.9	1.75	15.8	1.04	4.5	0.64	1.4	0.40	0.4	0.24	0.1
0.60 0.65					3.40 3.68	73.5 84.8	1.91 2.07	18.4 21.2	1.13 1.22	5.2 6.0	0.70	1.7	0.43	0.5	0.26	0.2
0.70					3.96	96.7	2.23	24.2	1.32	6.8	0.70	2.2	0.51	0.7	0.28	0.2
0.75					4.24	109.4	2.39	27.4	1.41	7.7	0.88	2.5	0.54	0.8	0.33	0.2
0.80 0.85					4.53 4.81	122.7 136.7	2.55 2.71	30.7 34.2	1.51 1.60	8.7 9.7	0.94	2.8 3.1	0.58	0.9 1.0	0.35	0.3
0.90							2.86	37.9	1.70	10.7	1.05	3.4	0.65	1.1	0.39	0.3
0.95 1.05							3.02 3.34	41.7 49.9	1.79 1.98	11.8 14.1	1.11	3.7 4.5	0.69 0.76	1.2	0.41	0.3
1.10							3.50	54.2	2.07	15.3	1.29	4.9	0.79	1.5	0.48	0.5
1.15 1.20							3.66 3.82	58.6 63.3	2.17	16.6 17.9	1.34	5.3 5.7	0.83	1.6	0.50	0.5
1.25							3.98	68.0	2.35	19.2	1.46	6.1	0.90	1.9	0.55	0.6
1.30 1.35							4.14	73.0	2.45 2.54	20.6 22.1	1.52 1.58	6.5 7.0	0.94	2.0	0.57	0.6 0.7
1.40									2.64	23.5	1.64	7.5	1.01	2.3	0.61	0.7
1.45 1.50									2.73	25.1 26.6	1.70 1.75	8.0 8.4	1.05	2.5	0.63	0.7
1.55									2.92	28.2	1.81	9.0	1.12	2.8	0.68	0.8
1.60 1.65									3.01 3.11	29.9 31.5	1.87 1.93	9.5 10.0	1.15 1.19	3.0 3.1	0.70	0.9
1.70									3.20	33.3	1.99	10.6	1.23	3.3	0.74	1.0
1.75 1.80									3.30 3.39	35.0 36.8	2.05	11.1	1.26 1.30	3.5	0.76	1.0
1.85									3.48	38.7	2.16	12.3	1.34	3.8	0.81	1.1
1.50 1.55									2.83	26.6 28.2	1.75 1.81	8.4 9.0	1.08	2.6	0.65	0.8
1.60									3.01	29.9	1.87	9.5	1.15	3.0	0.70	0.9
1.65									3.11	31.5	1.93	10.0	1.19	3.1	0.72	0.9
1.70 1.75											1.99 2.05	10.6 11.1	1.23 1.26	3.3	0.74	1.0
1.80											2.10	11.7	1.30	3.7	0.79	1.1
1.85 1.90											2.16	12.3 12.9	1.34	3.8 4.0	0.81	1.1
1.95											2.28	13.5	1.41	4.2	0.85	1.3
2.00 2.10											2.34	14.1 15.4	1.44	4.4	0.87	1.3
2.20											2.57	16.7	1.59	5.2	0.96	1.6
2.30 2.40											2.69	18.1 19.5	1.66 1.73	5.7 6.1	1.00	1.7
2.50											2.92	21.0	1.80	6.6	1.09	2.0
2.60 2.70											3.04 3.16	22.5 24.1	1.88 1.95	7.0 7.5	1.14 1.18	2.1
2.80											3.10	24.1	2.02	8.0	1.22	2.4
2.90 3.00													2.09	8.6 9.1	1.27	2.6
3.10													2.17	9.6	1.35	2.9
3.20													2.31	10.2	1.40	3.0
3.30 3.40													2.38 2.45	10.8 11.4	1.44 1.48	3.2 3.4
3.50													2.53	12.0	1.53	3.6
3.60 3.70													2.60 2.67	12.6 13.2	1.57 1.62	3.8
3.80													2.74	13.9	1.66	4.1
3.90 4.00													2.81	14.5 15.2	1.70 1.75	4.3 4.5
4.10													2.96	15.9	1.79	4.7
4.20 4.30													3.03 3.10	16.6 17.3	1.83	4.9 5.2
4.40															1.92	5.4
4.50 4.60															1.96 2.01	5.6 5.8
4.70															2.05	6.0
4.80 4.90															2.10	6.3 6.5
5.00															2.18	6.7
5.10 5.20															2.23	7.0 7.2
5.30															2.31	7.5
5.40 5.50															2.36 2.40	7.7 8.0
5.60															2.45	8.2
5.70															2.49	8.5
5.80 5.90															2.53 2.58	8.8 9.0
6.00															2.62	9.3
6.10 6.20															2.66	9.6
6.30															2.75	10.2
6.40 6.50															2.79 2.84	10.5 10.8
6.60															2.88	11.1
6.70															2.93	11.4
6.80 6.90															2.97 3.01	11.7 12.0
7.00															3.06	12.3
7.10															3.10	12.6

Pertes de charge dans les pièces du système iFIT (Eau 10°C)

Art. N°	Désignation		Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
762.101.303 762.101.304	Boîte simple 90°		\vdash	1/2"-d16 1/2"-d20 3/4"-d16 3/4"-d20	5.4 7.2 5.5 8.0	2.56 4.81 2.65 5.30
762.101.305	Boîte double 90°	Sortie Passage		1/2"-d16-d16 1/2"-d20-d16 1/2"-d16-d16 1/2"-d20-d16	6.5 6.1 4.9 4.2	3.08 2.89 2.32 1.99
762.101.259 762.101.260	Raccord de robine	tterie simple	Щ	1/2"-d16 1/2"-d20 3/4"-d16 3/4"-d20	5.5 8.8 5.6 8.1	2.61 5.88 2.65 5.41
762.101.261	Raccord de robinetterie double	inetterie		1/2"-d16-d16 1/2"-d20-d16 1/2"-d16-d16 1/2"-d20-d16	6.8 6.0 4.7 3.8	3.22 2.84 2.23 1.80
762.101.294 762.101.295 762.101.296	Distributeur y c. raccord	Sortie Passage	<u> </u>	3/4"-d16 3/4"-d20 3/4"	3.0 4.2 0.5	1.42 2.80 0.35
762.101.046 762.101.179	Equerre à 90°			d16 d20 d25 d32	6.3 8.7 5.2 11.0	2.98 5.81 4.88 12.57
	Cintre à 90° avec d	outil à main		d16 d20 d25 d32	0.1 0.1 0.1 0.1	0.05 0.06 0.09 0.10
762.101.180	Equerre à 45°			d25 d32	3.5 7.4	3.29 8.46
	Cintre à 45° avec d	outil à main		d16 d20 d25 d32	0.1 0.1 0.1 0.1	0.05 0.06 0.09 0.10
762.101.042 762.101.181	Té	Passage	V ↑ →	d16 d20 d25 d32	3.8 4.8 2.8 6.4	1.80 3.21 2.36 7.32

Les valeurs ont été déterminées conformément aux exigences de la SSIGE (SN EN 1267).

Pertes de charge dans les pièces du système iFIT (Eau 10°C)

Art. N°	Désignation		Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
762.101.183 762.101.185 762.101.187	Té réduit	Passage	V ↑ →	d20-d16 d25-d16 d25-d20 d32-d16 d32-d20 d32-d25	3.1 2.5 3.4 2.5 3.4 2.6	1.47 1.18 2.27 1.18 2.27 2.44
762.101.042 762.101.181	Té	Dérivation	↑ → ↑	d16 d20 d25 d32	6.4 9.5 5.5 12.4	3.03 6.34 5.16 14.17
762.101.183 762.101.185 762.101.187	Té réduit	Dérivation	↑ → V	d20-d16 d25-d16 d25-d20 d32-d16 d32-d20 d32-d25	4.6 3.1 5.0 3.2 4.7 4.9	2.18 1.47 3.34 1.52 3.14 4.60
762.101.044 762.101.175	Union		+	d16 d20 d25 d32	3.7 4.7 2.8 6.7	1.75 3.14 2.63 7.66
762.101.044 762.101.175 762.101.177	Réduction		→	d20-d16 d25-d16 d25-d20 d32-d16 d32-d20 d32-d25	3.1 2.5 3.4 2.5 3.3 2.7	1.47 1.18 2.27 1.18 2.20 2.53

Druckverlustdiagramm für iFIT PB- und ML Rohre:

Rohrreibungsdruckgefälle in Abhängigkeit vom Volumenstrom

Berechnungsgrundlage:

Wassertemperatur = 10° C Oberflächenrauigkeit k = 0.007 mm Viskosität = 0.00131 Pa·s Dichte ρ = 999.70 kg/m³

Empfohlene Fliessgeschwindigkeit nach SVGW Richtlinie W3/2013:

max. 4.0 m/s für Ausstossleitungen max. 3.0 m/s für Apparategruppen max. 3.0 m/s für Stockwerksverteilungen max. 2.0 m/s für Verteilleitungen

Diagramme des pertes de charge dans les tuyaux iFIT PB et ML:

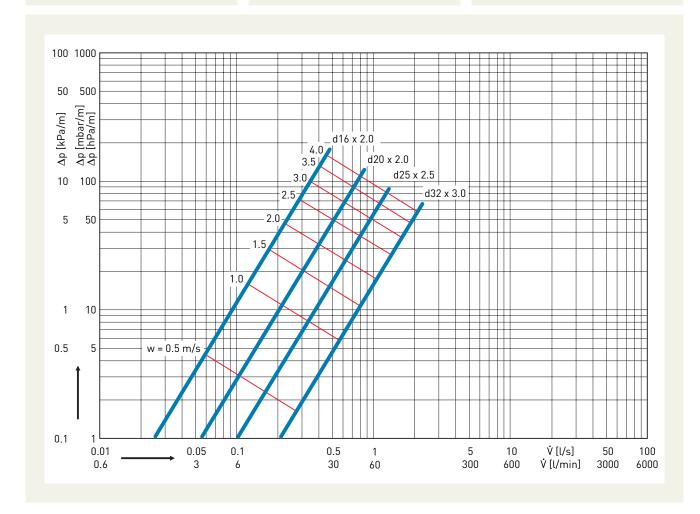
Perte de charge par frottement dépendant du débit volumique:

Base de calcul:

Température d'eau = 10° C Rugosité des parois k = 0.007 mmViscosité = 0.00131 Pa·sDensité ρ = 999.70 kg/m^3

Débit recommandé pour la politique SSIGE W3/2013:

max. 4.0 m/s pour conduite d'évacuation max. 3.0 m/s pour groupe d'appareils max. 3.0 m/s pour distribution d'étage max. 2.0 m/s pour conduite de distribution


Diagramma della perdita di carico per tubi sintetici iFIT PB e ML:

Caduta di pressione per attrito del tubo a dipendenza del flusso volume-

Base di calcolo:

Temperatura d'acqua = 10° C Rugosità del tubo k = 0.007 mmViscosità = $0.00131 \text{ Pa} \cdot \text{s}$ Densità ρ = 999.70 kg/m^3

Portata consigliata dal SSIGA politica W3/2013:

d	16		20		25		32	
DN	1	2	•	15	2	20	2	5
Vs	v	R	v	R	V	R	V	R
[l/s]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]
0.01	0.1	0.2	0.0	0.1				
0.02	0.2	0.7	0.1	0.2				
0.03	0.3	1.4	0.1	0.3	0.1	0.1		
0.04	0.4	2.3	0.2	0.6	0.1	0.2		
0.05	0.4	3.4	0.2	8.0	0.2	0.3		
0.06	0.5	4.7	0.3	1.2	0.2	0.4		
0.07	0.6	6.1	0.3	1.5	0.2	0.5	0.1	0.1
0.08	0.7	7.7	0.4	1.9	0.3	0.7	0.2	0.2
0.09	0.8	9.5	0.4	2.4	0.3	0.8	0.2	0.2
0.10	0.9	11.4	0.5	2.9	0.3	1.0	0.2	0.3
0.15	1.3	23.3	0.7	5.8	0.5	2.0	0.3	0.6
0.20	1.8	38.5	1.0	9.7	0.6	3.3	0.4	0.9
0.25	2.2	57.0	1.2	14.3	0.8	4.9	0.5	1.4
0.30	2.7	78.5	1.5	19.7	1.0	6.8	0.6	1.9
0.35	3.1	102.9	1.7	25.9	1.1	8.9	0.7	2.5
0.40	3.5	130.1	2.0	32.7	1.3	11.2	0.8	3.2
0.45	4.0	160.0	2.2	40.2	1.4	13.8	0.8	3.9
0.50			2.5	48.4	1.6	16.6	0.9	4.7
0.55			2.7	57.2	1.8	19.6	1.0	5.6
0.60			3.0	66.6	1.9	22.8	1.1	6.5
0.65			3.2	76.7	2.1	26.3	1.2	7.5
0.70			3.5	87.4	2.2	29.9	1.3	8.5
0.75			3.7	98.6	2.4	33.8	1.4	9.6
0.80			4.0	110.4	2.5	37.8	1.5	10.7
0.85					2.7	42.1	1.6	11.9
0.90					2.9	46.5	1.7	13.2
0.95					3.0	51.2	1.8	14.5
1.00					3.2	56.0	1.9	15.9
1.05					3.3	61.0	2.0	17.3
1.10					3.5	66.2	2.1	18.8
1.15					3.7	71.5	2.2	20.3
1.20					3.8	77.1	2.3	21.9
1.25					4.0	82.8	2.4	23.5
1.30							2.4	25.2
1.35							2.5	26.9
1.40							2.6	28.7
1.45							2.7	30.5
1.50							2.8	32.4
1.55							2.9	34.3
1.60							3.0	36.3
1.65							3.1	38.3
1.70							3.2	40.3
1.75							3.3	42.4
1.80							3.4	44.6
1.85							3.5	46.8
1.90							3.6	49.0
1.95							3.7	51.3
2.00							3.8	53.6
2.10							4.0	58.4

Druckverlustdiagramm für iFIT PB- und ML Rohre:

Rohrreibungsdruckgefälle in Abhängigkeit vom Volumenstrom

Berechnungsgrundlage:

Wassertemperatur = 60°C Oberflächenrauigkeit k = 0.007 mm Viskosität = 0.00013 Pa·s Dichte ρ = 983.19 kg/m³

Empfohlene Fliessgeschwindigkeit nach SVGW Richtlinie W3/2013:

max. 4.0 m/s für Ausstossleitungen max. 3.0 m/s für Apparategruppen max. 3.0 m/s für Stockwerksverteilungen max. 2.0 m/s für Verteilleitungen

Diagramme des pertes de charge dans les tuyaux iFIT PB et ML:

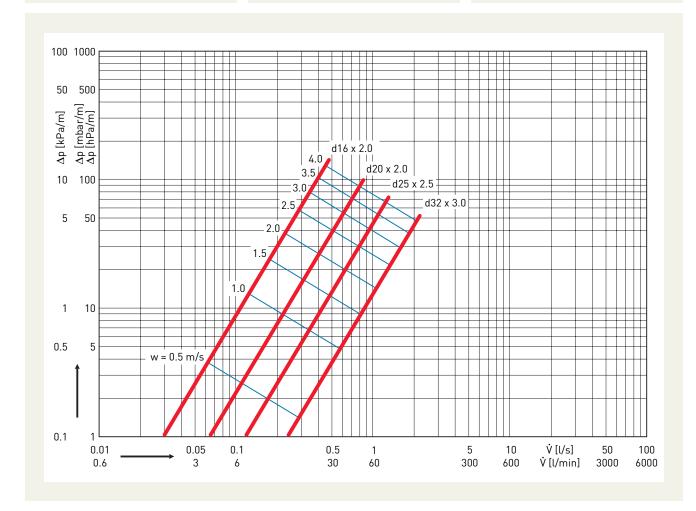
Perte de charge par frottement dépendant du débit volumique:

Base de calcul:

Température d'eau = 60° C Rugosité des parois k = 0.007 mmViscosité = 0.00013 Pa·sDensité ρ = 983.19 kg/m^3

Débit recommandé pour la politique SSIGE W3/2013:

max. 4.0 m/s pour conduite d'évacuation max. 3.0 m/s pour groupe d'appareils max. 3.0 m/s pour distribution d'étage max. 2.0 m/s pour conduite de distribution


Diagramma della perdita di carico per tubi sintetici iFIT PB e ML:

Caduta di pressione per attrito del tubo a dipendenza del flusso volumetrico:

Base di calcolo:

Temperatura d'acqua = 60° C Rugosità del tubo k = 0.007 mm Viscosità = 0.00013 Pa·s Densità ρ = 983.19 kg/m³

Portata consigliata dal SSIGA politica W3/2013:

d	16		20		25		32	
DN		12		15	2	20		25
Vs	V	R	٧	R	V	R	٧	R
[l/s]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]
0.01	0.1	0.1						
0.02	0.2	0.5	0.1	0.1				
0.03	0.3	1.0	0.1	0.3	0.1	0.1		
0.04	0.4	1.7	0.2	0.4	0.1	0.1		
0.05	0.4	2.6	0.2	0.6	0.2	0.2		
0.06	0.5	3.6	0.3	0.9	0.2	0.3		
0.07	0.6	4.7	0.3	1.2	0.2	0.4	0.1	0.1
0.08	0.7	5.9	0.4	1.5	0.3	0.5	0.2	0.1
0.09	0.8	7.3	0.4	1.8	0.3	0.6	0.2	0.2
0.10	0.9	8.8	0.5	2.2	0.3	8.0	0.2	0.2
0.15	1.3	18.2	0.7	4.6	0.5	1.6	0.3	0.4
0.20	1.8	30.4	1.0	7.6	0.6	2.6	0.4	0.7
0.25	2.2	45.2	1.2	11.3	0.8	3.9	0.5	1.1
0.30	2.7	62.6	1.5	15.7	1.0	5.3	0.6	1.5
0.35	3.1	82.4	1.7	20.6	1.1	7.0	0.7	2.0
0.40	3.5	104.5	2.0	26.2	1.3	8.9	0.8	2.5
0.45	4.0	128.9	2.2	32.3	1.4	11.0	0.8	3.1
0.50			2.5	38.9	1.6	13.3	0.9	3.8
0.55			2.7	46.1	1.8	15.8	1.0	4.5
0.60			3.0	53.9	1.9	18.4	1.1	5.2
0.65 0.70			3.2	62.1 70.9	2.1	21.2 24.2	1.2	6.0
0.75			3.7	80.2	2.4	27.4	1.4	7.7
0.80			4.0	89.9	2.5	30.7	1.5	8.7
0.85			7.0	00.0	2.7	34.2	1.6	9.7
0.90					2.9	37.9	1.7	10.7
0.95					3.0	41.7	1.8	11.8
1.00					3.2	45.7	1.9	12.9
1.05					3.3	49.9	2.0	14.1
1.10					3.5	54.2	2.1	15.3
1.15					3.7	58.6	2.2	16.6
1.20					3.8	63.3	2.3	17.9
1.25					4.0	68.0	2.4	19.2
1.30							2.4	20.6
1.35							2.5	22.1
1.40							2.6	23.5
1.45							2.7	25.1
1.50							2.8	26.6
1.55							2.9	28.2
1.60							3.0	29.9
1.65							3.1	31.5
1.70							3.2	33.3
1.75							3.3	35.0
1.80							3.4	36.8
1.85							3.5	38.7
1.90							3.6	40.6
1.95							3.7	42.5
2.00							3.8	44.4
2.10	<u> </u>						4.0	48.5

Pertes de charge dans les pièces du système INSTAFLEX HWS et HMS (Eau 10°C)

Art. N° HWS	Art. N° HMS	Désignation	Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
761.069.200	761.066.660			d16	0.1	0.05
761.069.201	761.066.661			d20	0.1	0.06
761.069.202	761.066.662			d25	0.1	0.09
761.069.203	761.066.663			d32	0.0	-
761.069.204	761.066.664	Manchon		d40	0.0	-
761.069.205	761.066.665	Wanchon		d50	0.0	-
761.069.206	761.066.666			d63	0.0	-
761.069.265	761.066.667			d75	0.0	-
761.069.266	761.066.668			d90	0.0	-
761.069.267	761.066.669			d110	0.0	-
761 060 214	761.066.600			d16	1.2	0.55
761.069.215				d20	1.2	0.33
	761.066.602			d25	1.2	1.08
	761.066.603			d32	1.2	1.38
761.069.218				d40	1.1	1.65
761.069.219		Equerre à 90°		d50	1.1	2.22
	761.066.606		•	d63	1.1	2.87
	761.066.607			d75	1.1	-
761.069.222				d90	1.1	-
761.069.223				d110	1.1	-
761.069.227				d16	0.3	0.14
761.069.228				d20	0.3	0.19
	761.066.612			d25	0.3	0.27
761.069.230			/	d32	0.3	0.34
761.069.231		Equerre à 45°		d40	0.3	0.45
761.069.232		•		d50	0.3	0.60
	761.066.616			d63	0.3	0.78
	761.066.617			d75	0.3	-
761.069.235				d90	0.3	-
761.069.236	761.066.619			d110	0.3	-
761.069.237	761.066.620			d16	0.1	0.05
761.069.238	761.066.621			d20	0.1	0.06
761.069.239	761.066.622			d25	0.1	0.09
761.069.240	761.066.623			d32	0.1	0.11
761.069.241	761.066.624	T4 4 mal > 00°	∨4 →	d40	0.0	-
761.069.242		Té égal à 90° Passage	, <u> </u>	d50	0.0	-
761.069.243			. •	d63	0.0	-
	761.066.627			d75	0.0	-
	761.066.628			d90	0.0	-
761.069.246	761.066.629			d110	0.0	-

Les valeurs ont été déterminées conformément aux exigences de la SSIGE (SN EN 1267).

Pertes de charge dans les pièces du système INSTAFLEX HWS et HMS (Eau 10°C)

Art. N° HWS	Art. N° HMS	Désignation	Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
761.069.237	761.066.620			d16	1.4	0.65
761.069.238	761.066.621			d20	1.4	0.86
761.069.239	761.066.622			d25	1.3	1.17
761.069.240	761.066.623			d32	1.2	1.38
761.069.241	761.066.624	T/ / 1 \ 00° D/ : 1'	4 ¥	d40	1.2	1.80
761.069.242		Té égal à 90° Dérivation	<u></u>	d50	1.2	2.42
761.069.243	761.066.626		. •	d63	1.1	2.87
761.069.244	761.066.627			d75	1.1	-
761.069.245	761.066.628			d90	1.1	-
761.069.246	761.066.629			d110	1.1	-
761.069.249	761.066.914			d20-16-16	0.1	0.05
761.069.250	761.066.915			d20-16-20	0.1	0.06
761.069.256	761.066.916			d25-20-20	0.3	0.21
761.069.252	761.066.917			d25-20-25	0.1	0.09
761.069.257	761.066.918			d25-25-20	0.2	0.14
761.069.258	761.066.919			d32-25-25	0.2	0.19
761.069.254	761.066.920	Té réduit à 90° Passage	∨ † <u>→</u>	d32-25-32	0.1	0.11
761.069.255	761.066.921		♦ I	d40-25-40	0.0	-
761.069.260	761.066.922			d40-32-40	0.0	-
761.069.261	761.066.923			d50-25-50	0.0	-
761.069.262	761.066.924			d50-32-50	0.0	-
761.069.263	761.066.925			d63-25-63	0.0	-
761.069.264	761.066.926			d63-40-63	0.0	-
761.069.249	761.066.914			d20-16-16	1.5	0.69
761.069.250	761.066.915			d20-16-20	1.0	0.54
761.069.256	761.066.916			d25-20-20	1.4	0.86
761.069.252	761.066.917			d25-20-25	8.0	0.64
761.069.257	761.066.918			d25-25-20	1.2	0.83
761.069.258	761.066.919		AT W	d32-25-25	8.0	0.72
	761.066.920	Té réduit à 90° Dérivation		d32-25-32	8.0	0.87
761.069.255	761.066.921		* I	d40-25-40	0.6	0.81
761.069.260	761.066.922			d40-32-40	0.9	1.22
	761.066.923			d50-25-50	0.7	1.24
761.069.262	761.066.924			d50-32-50	8.0	1.42
	761.066.925			d63-25-63	0.6	1.44
761.069.264	761.066.926			d63-40-63	0.6	1.44
761.069.277	761.066.670			d20-16	0.1	0.05
761.069.279	761.066.672			d25-20	0.2	0.12
761.069.281	761.066.675			d32-25	0.1	0.09
761.069.282	761.066.679		N	d40-32	0.1	0.11
761.069.283	761.066.684	Réduction	 	d50-40	0.1	0.15
761.069.285	761.066.690		•	d63-50	0.1	0.20
761.069.286	761.066.742			d75-63	0.1	0.26
761.069.288	761.066.745			d90-75	0.1	-
761.069.291	761.066.748			d110-90	0.1	-

Les valeurs ont été déterminées conformément aux exigences de la SSIGE (SN EN 1267).

Pertes de charge dans les pièces du système INSTAFLEX HWS et HMS (Eau 10°C)

Art. N° HWS Art. N	° HMS Désignation	Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
761.069.385			d16-1/2"	2.6	1.20
761.069.387			d20-3/4"	2.0	1.23
761.069.389			d25-1"	1.3	1.04
761.069.390	Transition	+	d32-1"	0.5	0.57
761.069.391			d40-1 1/4"	0.7	1.05
761.069.392			d50-1 1/2"	0.4	0.81
761.069.393			d63-2"	0.3	0.78
761.069.327			d75	0.0	-
761.069.328	Collet à bride	-#-	d90	0.0	-
761.069.329	Conot a prido	11	d110	0.0	-

INSTAFLEX (10°C)

Druckverlustdiagramm für INSTAFLEX PB-Rohre:

Rohrreibungsdruckgefälle in Abhängigkeit vom Volumenstrom

Berechnungsgrundlage:

Wassertemperatur = 10° C Oberflächenrauigkeit k = 0.007 mm Viskosität = 0.00131 Pa·s Dichte ρ = 999.70 kg/m³

Empfohlene Fliessgeschwindigkeit nach SVGW Richtlinie W3/2013:

max. 4.0 m/s für Ausstossleitungen max. 3.0 m/s für Apparategruppen max. 3.0 m/s für Stockwerksverteilungen max. 2.0 m/s für Verteilleitungen

Diagramme des pertes de charge dans les tuyaux INSTAFLEX PB:

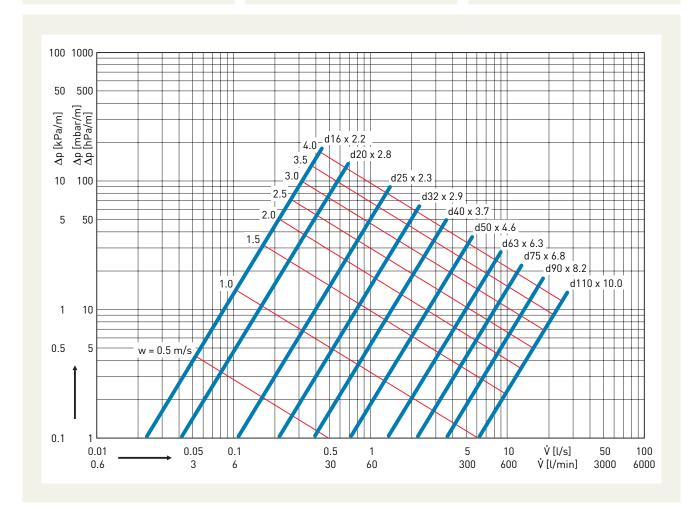
Perte de charge par frottement dépendant du débit volumique:

Base de calcul:

Température d'eau = 10° C Rugosité des parois k = 0.007 mmViscosité = 0.00131 Pa·sDensité ρ = 999.70 kg/m^3

Débit recommandé pour la politique SSIGE W3/2013:

max. 4.0 m/s pour conduite d'évacuation max. 3.0 m/s pour groupe d'appareils max. 3.0 m/s pour distribution d'étage max. 2.0 m/s pour conduite de distribution


Diagramma della perdita di carico per tubi sintetici INSTAFLEX PB:

Caduta di pressione per attrito del tubo a dipendenza del flusso volumetrico:

Base di calcolo:

Temperatura d'acqua= 10°CRugosità del tubo k= 0.007 mmViscosità= 0.00131 Pa·sDensità ρ = 999.70 kg/m³

Portata consigliata dal SSIGA politica W3/2013:

d ₁ x s		x 2.2		x 2.8		x 2.3		x 2.9		x 3.7		< 4.6		¢ 5.8
d ₂ Vs	V 1	1.6 R	V 14	4.4 R	V 20	0.4 R	V 26	6.2 R	V 32	2.6 R	V 4	0.8 R	5°	I.4 R
[l/s]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]
0.01	0.1	0.2	0.1	0.1	0.4	0.4								
0.02	0.2	0.8 1.6	0.1	0.3 0.6	0.1	0.1 0.1								
0.04	0.4	2.7	0.2	1.0	0.1	0.2	0.1	0.1						
0.05	0.5	4.0	0.3	1.4	0.2	0.3	0.1	0.1						
0.06	0.6 0.7	5.5 7.2	0.4	1.9 2.5	0.2	0.4	0.1	0.1 0.1						
0.07	0.7	9.1	0.4	3.2	0.2	0.6	0.1	0.1						
0.09	0.9	11.2	0.6	4.0	0.3	0.7	0.2	0.2						
0.10 0.15	1.0 1.4	13.7 27.4	0.6	4.8 9.7	0.3 0.5	0.9 1.8	0.2	0.3 0.5	0.1	0.1 0.2	0.1	0.1		
0.13	1.9	45.3	1.2	16.1	0.6	3.0	0.3	0.9	0.2	0.2	0.1	0.1		
0.25	2.4	67.1	1.5	23.8	0.8	4.5	0.5	1.3	0.3	0.5	0.2	0.2	0.1	0.1
0.30 0.35	2.8 3.3	92.4 121.1	1.8 2.1	32.7 42.9	0.9	6.1 8.1	0.6	1.8 2.4	0.4	0.6	0.2	0.2	0.1	0.1
0.40	3.8	153.1	2.5	54.2	1.2	10.2	0.7	3.1	0.4	1.1	0.3	0.4	0.2	0.1
0.45	4.3	188.3	2.8	66.7	1.4	12.5	0.8	3.8	0.5	1.3	0.3	0.4	0.2	0.1
0.50			3.1	80.2	1.5	15.1	0.9	4.5	0.6	1.6	0.4	0.5	0.2	0.2
0.55 0.60			3.4	94.9 110.5	1.7 1.8	17.8 20.8	1.0	5.4 6.2	0.7	1.9 2.2	0.4	0.6 0.7	0.3	0.2
0.65			4.0	127.2	2.0	23.9	1.2	7.2	0.8	2.5	0.5	0.9	0.3	0.3
0.70					2.1	27.2	1.3	8.2	0.8	2.9	0.5	1.0	0.3	0.3
0.75 0.80			_		2.3	30.7 34.4	1.4 1.5	9.2 10.3	0.9	3.2 3.6	0.6	1.1 1.2	0.4	0.4
0.85					2.6	38.3	1.6	11.5	1.0	4.0	0.7	1.4	0.4	0.5
0.90					2.8	42.3	1.7	12.7	1.1	4.5	0.7	1.5	0.4	0.5
0.95 1.00					2.9 3.1	46.5 50.9	1.8 1.9	14.0 15.3	1.1	4.9 5.4	0.7	1.7 1.8	0.5 0.5	0.6
1.05					3.2	55.4	1.9	16.7	1.3	5.8	0.8	2.0	0.5	0.7
1.10					3.4	60.2	2.0	18.1	1.3	6.3	0.8	2.2	0.5	0.7
1.15 1.20					3.5	65.1	2.1	19.6 21.1	1.4 1.4	6.9 7.4	0.9	2.3	0.6	0.8
1.25							2.3	22.7	1.5	7.9	1.0	2.7	0.6	0.9
1.30							2.4	24.3	1.6	8.5	1.0	2.9	0.6	1.0
1.35							2.5 2.6	25.9 27.6	1.6 1.7	9.1 9.7	1.0	3.1 3.3	0.7	1.0
1.45							2.7	29.4	1.7	10.3	1.1	3.5	0.7	1.1
1.50							2.8	31.2	1.8	10.9	1.1	3.7	0.7	1.2
1.55							2.9	33.0	1.9	11.6	1.2	3.9	0.7	1.3
1.60 1.65							3.0	34.9 36.9	1.9 2.0	12.2 12.9	1.2 1.3	4.2 4.4	0.8	1.4
1.70							3.2	38.9	2.0	13.6	1.3	4.6	0.8	1.5
1.75							3.2	40.9	2.1	14.3	1.3	4.9	0.8	1.6
1.80 1.85							3.3 3.4	43.0 45.1	2.2	15.0 15.8	1.4 1.4	5.1 5.4	0.9	1.7
1.90							3.5	47.2	2.3	16.5	1.5	5.6	0.9	1.9
1.95									2.3	17.3	1.5	5.9	0.9	1.9
2.00									2.4	18.1 19.7	1.5 1.6	6.2 6.7	1.0	2.0
2.20									2.6	21.4	1.7	7.3	1.1	2.4
2.30									2.8	23.1	1.8	7.9	1.1	2.6
2.40									2.9 3.0	24.9 26.8	1.8 1.9	8.5 9.1	1.2 1.2	2.8 3.0
2.60			_						3.1	28.7	2.0	9.8	1.3	3.2
2.70									3.2	30.7	2.1	10.4	1.3	3.4
2.80									3.4	32.7 34.8	2.1	11.1 11.8	1.3 1.4	3.7
3.00									0.0	34.0	2.3	12.6	1.4	4.1
3.10											2.4	13.3	1.5	4.4
3.20											2.4	14.1 14.9	1.5 1.6	4.6 4.9
3.40											2.6	15.7	1.6	5.2
3.50											2.7	16.5	1.7	5.4
3.60 3.70											2.8	17.3 18.2	1.7 1.8	5.7 6.0
3.80											2.9	19.0	1.8	6.3
3.90											3.0	19.9	1.9	6.6
4.00											3.1	20.8	1.9 2.0	6.9 7.5
4.40													2.1	8.1
4.60													2.2	8.8
4.80 5.00													2.3	9.5 10.2
5.00													2.4	10.2
5.40													2.6	11.6
5.60													2.7	12.4
5.80 6.00													2.8	13.2 14.0
6.25													3.0	15.0
6.50													3.1	16.1

INSTAFLEX (60°C)

Druckverlustdiagramm für INSTAFLEX PB-Rohre:

Rohrreibungsdruckgefälle in Abhängigkeit vom Volumenstrom

Berechnungsgrundlage:

Wassertemperatur = 60°C Oberflächenrauigkeit k = 0.007 mm Viskosität = 0.00013 Pa·s Dichte ρ = 983.19 kg/m³

Empfohlene Fliessgeschwindigkeit nach SVGW Richtlinie W3/2013:

max. 4.0 m/s für Ausstossleitungen max. 3.0 m/s für Apparategruppen max. 3.0 m/s für Stockwerksverteilungen max. 2.0 m/s für Verteilleitungen

Diagramme des pertes de charge dans les tuyaux INSTAFLEX PB:

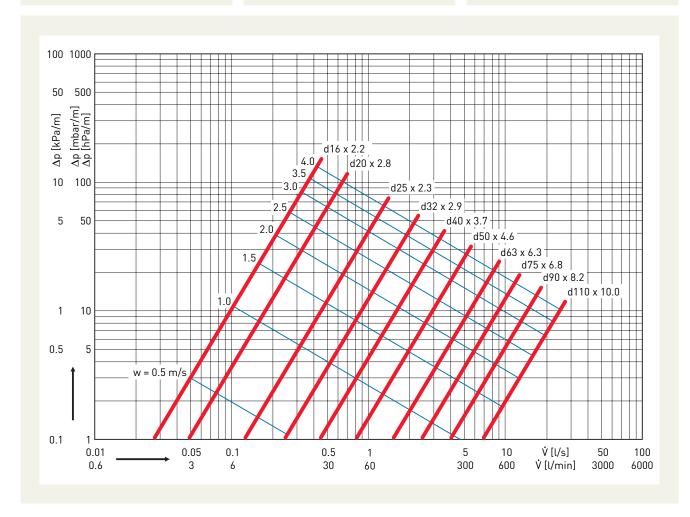
Perte de charge par frottement dépendant du débit volumique:

Base de calcul:

Température d'eau = 60° C Rugosité des parois k = 0.007 mmViscosité = 0.00013 Pa·sDensité ρ = 983.19 kg/m^3

Débit recommandé pour la politique SSIGE W3/2013:

max. 4.0 m/s pour conduite d'évacuation max. 3.0 m/s pour groupe d'appareils max. 3.0 m/s pour distribution d'étage max. 2.0 m/s pour conduite de distribution


Diagramma della perdita di carico per tubi sintetici INSTAFLEX PB:

Caduta di pressione per attrito del tubo a dipendenza del flusso volumetrico:

Base di calcolo:

Temperatura d'acqua = 60° C Rugosità del tubo k = 0.007 mmViscosità = $0.00013 \text{ Pa} \cdot \text{s}$ Densità ρ = 983.19 kg/m^3

Portata consigliata dal SSIGA politica W3/2013:

d ₁ x s		x 2.2		¢ 2.8		¢ 2.3		¢ 2.9		3.7		¢ 4.6		5.8
d ₂ Vs	V 1	1.6 R	V 14	1.4 R	v 20	0.4 R	V 26	6.2 R	V 32	2.6 R	V 40	0.8 R	V 51	l.4 R
[l/s]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]	[m/s]	[hPa/m]
0.01	0.1	0.2	0.1	0.1										
0.02	0.2	0.6 1.2	0.1	0.2	0.1	0.1								
0.03	0.3	2.0	0.2	0.4	0.1	0.1								
0.05	0.5	3.0	0.3	1.1	0.2	0.2	0.1	0.1						
0.06	0.6	4.2	0.4	1.5	0.2	0.3	0.1	0.1						
0.07 0.08	0.7	5.5 7.0	0.4	1.9 2.5	0.2	0.4	0.1	0.1 0.1						
0.09	0.9	8.6	0.6	3.0	0.3	0.6	0.2	0.2						
0.10	1.0	10.6	0.6	3.7	0.3	0.7	0.2	0.2	0.1	0.1				
0.15 0.20	1.4 1.9	21.4 35.8	0.9	7.6 12.6	0.5	1.4 2.4	0.3	0.4	0.2	0.1	0.1	0.1		
0.25	2.4	53.2	1.5	18.8	0.8	3.5	0.5	1.1	0.2	0.4	0.2	0.1		
0.30	2.8	73.7	1.8	26.0	0.9	4.9	0.6	1.5	0.4	0.5	0.2	0.2	0.1	0.1
0.35	3.3	97.0	2.1	34.2	1.1	6.4	0.6	1.9	0.4	0.7	0.3	0.2	0.2	0.1
0.40 0.45	3.8 4.3	123.0 151.8	2.5	43.4 53.6	1.2 1.4	8.1 10.0	0.7	2.4 3.0	0.5 0.5	0.8 1.0	0.3	0.3	0.2	0.1
0.50	7.0	101.0	3.1	64.6	1.5	12.1	0.9	3.6	0.6	1.3	0.4	0.4	0.2	0.1
0.55			3.4	76.6	1.7	14.3	1.0	4.3	0.7	1.5	0.4	0.5	0.3	0.2
0.60			3.7	89.5 103.2	1.8 2.0	16.7	1.1 1.2	5.0	0.7	1.7	0.5	0.6	0.3	0.2
0.65 0.70			4.0	103.2	2.0	19.3 22.0	1.2	5.8 6.6	0.8	2.0	0.5	0.7	0.3	0.2
0.75					2.3	24.9	1.4	7.5	0.9	2.6	0.6	0.9	0.4	0.3
0.80					2.4	27.9	1.5	8.4	1.0	2.9	0.6	1.0	0.4	0.3
0.85					2.6 2.8	31.1 34.4	1.6 1.7	9.3 10.3	1.0	3.3 3.6	0.7	1.1 1.2	0.4	0.4
0.95					2.9	37.9	1.8	11.4	1.1	4.0	0.7	1.3	0.5	0.4
1.00					3.1	41.6	1.9	12.5	1.2	4.3	8.0	1.5	0.5	0.5
1.05 1.10					3.2 3.4	45.3 49.2	1.9 2.0	13.6 14.8	1.3 1.3	4.7 5.2	0.8	1.6 1.7	0.5	0.5 0.6
1.15					3.5	53.3	2.1	16.0	1.4	5.6	0.8	1.7	0.6	0.6
1.20							2.2	17.2	1.4	6.0	0.9	2.0	0.6	0.7
1.25							2.3	18.5	1.5	6.5	1.0	2.2	0.6	0.7
1.30 1.35							2.4	19.9 21.3	1.6 1.6	6.9 7.4	1.0	2.4	0.6	0.8
1.40							2.6	22.7	1.7	7.9	1.1	2.7	0.7	0.9
1.45							2.7	24.2	1.7	8.4	1.1	2.9	0.7	0.9
1.50 1.55							2.8	25.7 27.2	1.8	9.0 9.5	1.1	3.0 3.2	0.7	1.0 1.1
1.60							3.0	28.8	1.9	10.0	1.2	3.4	0.7	1.1
1.65							3.1	30.4	2.0	10.6	1.3	3.6	0.8	1.2
1.70							3.2	32.1	2.0	11.2	1.3	3.8	0.8	1.2
1.75 1.80							3.2	33.8 35.5	2.1	11.8 12.4	1.3 1.4	4.0 4.2	0.8	1.3
1.85							3.4	37.3	2.2	13.0	1.4	4.4	0.9	1.5
1.90							3.5	39.1	2.3	13.6	1.5	4.6	0.9	1.5
1.95 2.00									2.3	14.3 15.0	1.5 1.5	4.9 5.1	0.9	1.6 1.7
2.10									2.5	16.3	1.6	5.5	1.0	1.8
2.20									2.6	17.7	1.7	6.0	1.1	2.0
2.30									2.8	19.2	1.8	6.5	1.1	2.1
2.40									2.9 3.0	20.7	1.8	7.0 7.6	1.2 1.2	2.3
2.60									3.1	23.9	2.0	8.1	1.3	2.7
2.70									3.2	25.5	2.1	8.7	1.3	2.9
2.80									3.4	27.2 29.0	2.1	9.2 9.8	1.3	3.0 3.2
3.00									0.0	20.0	2.3	10.5	1.4	3.4
3.10											2.4	11.1	1.5	3.6
3.20 3.30											2.4	11.7 12.4	1.5 1.6	3.9 4.1
3.40											2.6	13.1	1.6	4.1
3.50											2.7	13.8	1.7	4.5
3.60											2.8	14.5	1.7	4.8
3.70 3.80											2.8	15.2 15.9	1.8	5.0 5.2
3.90											3.0	16.7	1.9	5.5
4.00											3.1	17.5	1.9	5.7
4.20 4.40													2.0	6.3 6.8
4.40													2.1	7.4
4.80													2.3	7.9
5.00													2.4	8.5
5.20 5.40													2.5	9.2 9.8
5.60													2.7	10.5
5.80													2.8	11.1
6.00 6.25													2.9 3.0	11.8 12.7
6.25													3.0	13.6

Pertes de charges dans les raccords à compression du système INSTAFLEX (Eau 10°C)

Art. N°	Désignation	n S		DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
760.857.187 760.857.188 760.857.189	Boîte simple à 90°	Boîte simple à 90°		1/2"-d16 1/2"-d20 3/4"-d20	12.6 3.1 11.2	7.02 1.73 9.00
760.857.190 760.857.192 760.857.193 760.857.190	Boîte double à 90°	Sortie		1/2"-d16-d16 1/2"-d16-d20 1/2"-d20-d20 1/2"-d16-d16	10.9 7.3 8.6 3.3	6.07 4.07 5.42 1.52
760.857.192 760.857.193		Passage	W "	1/2"-d16-d20 1/2"-d20-d16	2.6 4.2	1.20 2.59
760.857.007 760.857.011 760.857.012	Raccord de robinette	rie simple	П	1/2"-d16 1/2"-d20 3/4"-d20	9.5 3.8 11.4	5.29 2.40 9.16
760.857.014 760.857.013 760.857.015	Raccord de	Sortie		1/2"-d16-d16 1/2"-d16-d16 1/2"-d20-d20	9.4 10.2 8.5	5.24 5.68 5.38
760.857.014 760.857.013 760.857.015	robinetterie double	Passage		1/2"-d16-d16 1/2"-d16-d16 1/2"-d20-d20	2.6 4.8 5.0	1.20 2.22 3.08
760.857.061	Distributeur 3/4"	Sortie	<u> </u>	3/4"-d16 3/4"-d20	2.1 1.9	0.97 1.17
760.857.062	Distributed 5/4	Passage	1111	3/4"	1.4	0.99
760.857.070	Distributeur 1"	Sortie	<u> </u>	1"-d16	2.0	0.92
		Passage		1"-d16	1.4	1.17
760.857.047 760.857.048	Equerre à 90°			d16 d20	5.4 4.0	2.49 2.47
760.857.054 760.857.055	Tá ágal	Passage	V ↑ →	d16 d20	1.7 1.1	0.78 0.68
760.857.054 760.857.055	Té égal	Dérivation	↑ -	d16 d20	5.6 4.4	2.58 2.71

Les valeurs ont été déterminées conformément aux exigences de la SSIGE (SN EN 1267).

Pertes de charges dans les raccords à compression du système INSTAFLEX (Eau 10°C)

Art. N°	Désignation		Symbole	DN/d	Valeur ς (à 2m/s)	Longueur de tube équivalente en m
760.857.056			V ↑ _	d20-d16-d20	1.5	0.69
760.857.057		Passage		d20-d16-d16	1.1	0.68
760.857.058	Té réduit		↑ I	d20-d20-d16	1.1	0.68
760.857.056	re reduit		↑ ∨	d20-d16-d20	3.9	1.80
760.857.057		Dérivation	 	d20-d16-d16	3.5	1.84
760.857.058			↑	d20-d20-d16	3.9	1.80
760.857.045	Union			d16	1.5	0.69
760.857.046	Union			d20	1.2	0.74

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
1682.240	Clapet de retenue		1/2	6.5	0.8	0.4
1682.320	Clapet de retenue		3/4	15.3	0.8	0.6
1682.400	Clapet de retenue		1	29.4	0.4	0.4
1682.480	Clapet de retenue		11/4	60.0	0.3	0.4
1682.560	Clapet de retenue	10 10	1½	75.0	0.6	1.1
1682.640	Clapet de retenue		2	114.0	0.4	0.9
1812.240	Filtre oblique, 250 µm		1/2	4.2	10.4	5.8
1812.320	Filtre oblique, 250 µm		3/4	7.0	7.7	6.2
1812.400	Filtre oblique, 250 µm		1	12.4	5.4	5.7
1812.480	Filtre oblique, 250 µm		11/4	19.4	5.4	7.9
1812.560	Filtre oblique, 250 μm		1½	27.7	6.8	12.0
1812.640	Filtre oblique, 250 μm		2	39.5	5.4	12.7
1812.720	Filtre oblique, 560 μm		21/2	67.3	4.9	15.8
1830.400	Filtre fin		1	11.2	5.0	5.3
1830.480	Filtre fin		11/4	16.3	6.3	9.3
1830.560	Filtre fin	<u> </u>	1½	17.9	12.8	22.7
1830.640	Filtre fin	•	2	19.0	27.7	65.2
1836.400	Filtre fin		1	11.2	5.0	5.3
1836.480	Filtre fin	TIT .	11/4	16.3	6.3	9.3
1836.560	Filtre fin	U	1½	17.9	12.8	22.7
1836.640	Filtre fin	*	2	19.0	27.7	65.2
1840.400	Filtre fin avec bypass JRG LegioStop	M	1	8.5	8.7	9.2
1840.480	Filtre fin avec bypass JRG LegioStop	T	11⁄4	13.0	10.0	14.7
1840.560	Filtre fin avec bypass JRG LegioStop		1½	15.2	17.7	31.4
1840.640	Filtre fin avec bypass JRG LegioStop	Ť	2	17.9	31.3	73.7
1846.400	Filtre fin avec bypass JRG LegioStop	BA	1	8.5	8.7	9.2
1846.480	Filtre fin avec bypass JRG LegioStop		11⁄4	13.0	10.0	14.7
1846.560	Filtre fin avec bypass JRG LegioStop		1½	15.2	17.7	31.4
1846.640	Filtre fin avec bypass JRG LegioStop	Ţ	2	17.9	31.3	73.7
1850.065	Filtre oblique		65	122.6	1.9	-
1850.080	Filtre oblique		80	196.3	1.7	-
1850.100	Filtre oblique		100	298.1	1.8	-
1870.025	Filtre JRG CleanLine	**	1	14.7	2.9	3.1
1870.032	Filtre JRG CleanLine	•	11/4	18.3	5.0	7.4

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5120.100	Vanne de batterie JRGUSIT JRG LegioStop		1-20	6.3	6.5	6.9
5120.110	Vanne de batterie JRGUSIT JRG LegioStop		1-25	9.3	7.3	7.7
5120.200	Vanne de batterie JRGUSIT JRG LegioStop	JRSUSIV 11/0-3/A	11⁄4-20	6.3	6.5	9.6
5120.210	Vanne de batterie JRGUSIT JRG LegioStop	Comment of the Commen	11⁄4-25	9.3	7.3	10.7
5120.220	Vanne de batterie JRGUSIT JRG LegioStop		11⁄4-32	14.1	8.4	12.4
5120.300	Vanne de batterie JRGUSIT JRG LegioStop		1½-20	6.3	6.5	11.5
5120.310	Vanne de batterie JRGUSIT JRG LegioStop		1½-25	9.3	7.3	12.9
5120.320	Vanne de batterie JRGUSIT JRG LegioStop		1½-32	14.1	8.4	14.9
5120.330	Vanne de batterie JRGUSIT JRG LegioStop		1½-40	18.9	11.5	20.4
5120.400	Vanne de batterie JRGUSIT JRG LegioStop		2-20	6.3	6.5	15.3
5120.410	Vanne de batterie JRGUSIT JRG LegioStop		2-25	9.3	7.3	17.2
5120.420	Vanne de batterie JRGUSIT JRG LegioStop		2-32	14.1	8.4	19.8
5120.430	Vanne de batterie JRGUSIT JRG LegioStop		2-40	18.9	11.5	27.1
5120.440	Vanne de batterie JRGUSIT JRG LegioStop		2-50	32.8	9.3	21.9
5120.500	Vanne de batterie JRGUSIT JRG LegioStop		2½-25	9.3	7.3	23.5
5120.510	Vanne de batterie JRGUSIT JRG LegioStop		21/2-32	14.1	8.4	27.0
5120.520	Vanne de batterie JRGUSIT JRG LegioStop		2½-40	18.9	11.5	37.0

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5151.100	Vanne de batterie JRGUSIT NG		25-20	11.1	2.1	2.2
5151.110	Vanne de batterie JRGUSIT NG		25-25	16.2	2.4	2.5
5151.200	Vanne de batterie JRGUSIT NG		32-20	11.1	2.1	3.1
5151.210	Vanne de batterie JRGUSIT NG	25 DIVIS-25	32-25	16.2	2.4	3.5
5151.220	Vanne de batterie JRGUSIT NG	1	32-32	25.4	2.6	3.8
5151.300	Vanne de batterie JRGUSIT NG	44.	40-20	11.1	2.1	3.7
5151.310	Vanne de batterie JRGUSIT NG		40-25	16.2	2.4	4.3
5151.320	Vanne de batterie JRGUSIT NG		40-32	25.4	2.6	4.6
5151.330	Vanne de batterie JRGUSIT NG		40-40	32.8	3.8	6.7
5151.400	Vanne de batterie JRGUSIT NG		50-20	11.1	2.1	4.9
5151.410	Vanne de batterie JRGUSIT NG		50-25	16.2	2.4	5.7
5151.420	Vanne de batterie JRGUSIT NG		50-32	25.4	2.6	6.1
5151.430	Vanne de batterie JRGUSIT NG		50-40	32.8	3.8	9.0
5151.440	Vanne de batterie JRGUSIT NG		50-50	63.4	2.5	5.9
5151.500	Vanne de batterie JRGUSIT NG		65-25	16.2	2.4	7.7
5151.510	Vanne de batterie JRGUSIT NG		65-32	25.4	2.6	8.4
5151.520	Vanne de batterie JRGUSIT NG		65-40	32.8	3.8	12.2
5151.530	Vanne de batterie JRGUSIT NG		65-50	63.4	2.5	8.0
5151.540	Vanne de batterie JRGUSIT NG		65-65	82.3	2.5	8.0
5191.400	Batterie compacte JRGUSIT Combi, JRG LegioStop, sortie 1	1 2	25-25-25	11.9	4.4	4.7
5191.400	Batterie compacte JRGUSIT Combi, JRG LegioStop, sortie 2		25-25-25	12.1	4.3	4.6
5191.480	Batterie compacte JRGUSIT Combi, JRG LegioStop, sortie 1	R.A.	32-25-25	11.9	4.4	4.7
5191.480	Batterie compacte JRGUSIT Combi, JRG LegioStop, sortie 2		32-25-25	12.1	4.3	4.6
5200.240	Vanne oblique JRG LegioStop		1/2	6.2	2.1	1.2
5200.320	Vanne oblique JRG LegioStop	•	3/4	12.3	1.7	1.4
5200.400	Vanne oblique JRG LegioStop		1	20.5	1.5	1.6
5200.480	Vanne oblique JRG LegioStop		11/4	34.8	1.4	2.1
5200.560	Vanne oblique JRG LegioStop		1½	50.3	1.6	2.8
5200.640	Vanne oblique JRG LegioStop		2	83.3	1.4	3.3
5200.720	Vanne oblique JRG LegioStop		2½	106.0	1.5	4.8
5200.800	Vanne oblique JRG LegioStop		3	225.3	1.5	6.0

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5207.015	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress	>	d15	6.2	1.5	0.8
5207.018	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress	otalia de la companya	d18	6.2	2.6	2.1
5207.022	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d22	12.3	2.4	2.5
5207.028	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d28	20.5	2.0	2.9
5207.035	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d35	34.8	1.8	3.2
5207.042	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d42	50.3	1.9	4.5
5207.054	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d54	83.3	1.7	5.5
5208.015	Vanne oblique JRG LegioStop avec transition Mapress	%	d15	6.2	1.5	0.8
5208.018	Vanne oblique JRG LegioStop avec transition Mapress		d18	6.2	2.6	2.1
5208.022	Vanne oblique JRG LegioStop avec transition Mapress		d22	12.3	2.4	2.5
5208.028	Vanne oblique JRG LegioStop avec transition Mapress		d28	20.5	2.0	2.9
5208.035	Vanne oblique JRG LegioStop avec transition Mapress		d35	34.8	1.8	3.2
5208.042	Vanne oblique JRG LegioStop avec transition Mapress		d42	50.3	1.9	4.5
5208.054	Vanne oblique JRG LegioStop avec transition Mapress		d54	83.3	1.7	5.5

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5211.015	Vanne oblique JRG LegioStop avec filetage mâle BR1	•	3/4	6.2	2.1	1.2
5211.020	Vanne oblique JRG LegioStop avec filetage mâle BR1		1	12.3	1.7	1.4
5211.025	Vanne oblique JRG LegioStop avec filetage mâle BR1	2	11/4	20.5	1.5	1.6
5211.032	Vanne oblique JRG LegioStop avec filetage mâle BR1		1½	34.8	1.4	2.1
5211.040	Vanne oblique JRG LegioStop avec filetage mâle BR1		13⁄4	50.3	1.6	2.8
5211.050	Vanne oblique JRG LegioStop avec filetage mâle BR1		23/8	83.3	1.4	3.3
5211.065	Vanne oblique JRG LegioStop avec filetage mâle BR1		2½	106.0	1.5	4.8
5211.080	Vanne oblique JRG LegioStop avec filetage mâle BR1		3	225.3	1.5	6.0
5213.015	Vanne oblique JRG LegioStop avec raccord Mapress		d15	6.2	1.1	0.6
5213.018	Vanne oblique JRG LegioStop avec raccord Mapress		d18	6.2	2.3	1.8
5213.022	Vanne oblique JRG LegioStop avec raccord Mapress		d22	12.3	1.9	2.0
5213.028	Vanne oblique JRG LegioStop avec raccord Mapress		d28	20.5	1.7	2.5
5213.035	Vanne oblique JRG LegioStop avec raccord Mapress		d35	34.8	1.5	2.7
5213.042	Vanne oblique JRG LegioStop avec raccord Mapress		d42	50.3	1.7	4.0
5213.054	Vanne oblique JRG LegioStop avec raccord Mapress		d54	83.3	1.5	4.8
5221.240	Vanne oblique JRG LegioStop		1/2	6.2	2.1	1.2
5221.320	Vanne oblique JRG LegioStop		3/4	12.3	1.7	1.4
5221.400	Vanne oblique JRG LegioStop		1	20.5	1.5	1.6
5221.480	Vanne oblique JRG LegioStop		11/4	34.8	1.4	2.1
5221.560	Vanne oblique JRG LegioStop		1½	50.3	1.6	2.8
5221.640	Vanne oblique JRG LegioStop		2	83.3	1.4	3.3
5221.720 5221.800	Vanne oblique JRG LegioStop Vanne oblique JRG LegioStop		2½ 3	106.0 225.3	1.5 1.5	4.8 6.0
5221.000	varine oblique JKG LegioStop		3	220.3	1.0	0.0

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5222.016	Vanne oblique JRG LegioStop Sanipex MT		d16	6.2	2.1	1.2
5222.020	Vanne oblique JRG LegioStop Sanipex MT		d20	6.2	2.1	1.2
5222.026	Vanne oblique JRG LegioStop Sanipex MT		d26	12.3	1.7	1.4
5222.032	Vanne oblique JRG LegioStop Sanipex MT		d32	20.5	1.5	1.6
5222.040	Vanne oblique JRG LegioStop Sanipex MT		d40	34.8	1.4	2.1
5222.050	Vanne oblique JRG LegioStop Sanipex MT		d50	50.3	1.6	2.8
5222.063	Vanne oblique JRG LegioStop Sanipex MT		d63	83.3	1.4	3.3
5225.015	Vanne oblique JRG LegioStop à emboîter	•	d15	6.2	2.1	1.2
5225.018	Vanne oblique JRG LegioStop à emboîter		d18	6.2	2.1	1.2
5225.022	Vanne oblique JRG LegioStop à emboîter		d22	12.3	1.7	1.4
5225.028	Vanne oblique JRG LegioStop à emboîter		d28	20.5	1.5	1.6
5225.035	Vanne oblique JRG LegioStop à emboîter		d35	34.8	1.4	2.1
5225.042	Vanne oblique JRG LegioStop à emboîter		d42	50.3	1.6	2.8
5225.054	Vanne oblique JRG LegioStop à emboîter		d54	83.3	1.4	3.3

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5227.015	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d15	6.2	1.5	0.8
5227.018	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d18	6.2	2.6	2.1
5227.022	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d22	12.3	2.4	2.5
5227.028	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d28	20.5	2.0	2.9
5227.035	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d35	34.8	1.8	3.2
5227.042	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d42	50.3	1.9	4.5
5227.054	Vanne oblique JRG LegioStop avec transition Optipress/Sanpress		d54	83.3	1.7	5.5
5228.015	Vanne oblique JRG LegioStop avec transition Mapress		d15	6.2	1.5	0.8
5228.018	Vanne oblique JRG LegioStop avec transition Mapress		d18	6.2	2.6	2.1
5228.022	Vanne oblique JRG LegioStop avec transition Mapress		d22	12.3	2.4	2.5
5228.028	Vanne oblique JRG LegioStop avec transition Mapress		d28	20.5	2.0	2.9
5228.035	Vanne oblique JRG LegioStop avec transition Mapress		d35	34.8	1.8	3.2
5228.042	Vanne oblique JRG LegioStop avec transition Mapress		d42	50.3	1.9	4.5
5228.054	Vanne oblique JRG LegioStop avec transition Mapress		d54	83.3	1.7	5.5

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5229.016	Vanne oblique JRG LegioStop avec transition Mepla		d16	6.2	2.1	1.2
5229.020	Vanne oblique JRG LegioStop avec transition Mepla		d20	6.2	3.1	2.5
5229.026	Vanne oblique JRG LegioStop avec transition Mepla		d26	12.3	3.2	3.4
5229.032	Vanne oblique JRG LegioStop avec transition Mepla		d32	20.5	2.5	3.7
5229.040	Vanne oblique JRG LegioStop avec transition Mepla		d40	34.8	2.1	3.7
5229.050	Vanne oblique JRG LegioStop avec transition Mepla		d50	50.3	2.3	5.4
5229.063	Vanne oblique JRG LegioStop avec transition Mepla		d63	83.3	2.0	6.4
5234.015	Vanne oblique JRG LegioStop avec raccord Optipress/Sanpress		d15	6.2	1.1	0.6
5234.018	Vanne oblique JRG LegioStop avec raccord Optipress/Sanpress		d18	6.2	2.3	1.8
5234.022	Vanne oblique JRG LegioStop avec raccord Optipress/Sanpress		d22	12.3	1.9	2.0
5234.028	Vanne oblique JRG LegioStop avec raccord Optipress/Sanpress		d28	20.5	1.7	2.5
5234.035	Vanne oblique JRG LegioStop avec raccord Optipress/Sanpress		d35	34.8	1.5	2.7
5234.042	Vanne oblique JRG LegioStop avec raccord Optipress/Sanpress		d42	50.3	1.7	4.0
5234.054	Vanne oblique JRG LegioStop avec raccord Optipress/Sanpress		d54	83.3	1.5	4.8

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5350.240	Vanne droite JRG LegioStop		1/2	2.7	11.5	6.4
5350.320	Vanne droite JRG LegioStop		3/4	4.8	11.1	8.9
5350.400	Vanne droite JRG LegioStop		1	8.2	9.2	9.7
5350.480	Vanne droite JRG LegioStop		11/4	13.7	9.0	13.2
5350.560	Vanne droite JRG LegioStop	JRG /	1½	19.0	11.3	20.0
5350.640	Vanne droite JRG LegioStop		2	30.9	10.5	24.7
5350.720	Vanne droite JRG LegioStop		2½	55.3	9.3	29.9
5354.016	Vanne droite JRG LegioStop Sanipex MT	1	d16	2.7	11.5	6.4
5354.020	Vanne droite JRG LegioStop Sanipex MT		d20	2.7	11.5	9.2
5354.026	Vanne droite JRG LegioStop Sanipex MT		d26	4.8	11.1	11.7
5354.032	Vanne droite JRG LegioStop Sanipex MT		d32	8.2	9.2	13.5
5357.015	Vanne droite JRG LegioStop avec transition Optipress	~	d15	2.7	5.2	2.9
5357.018	Vanne droite JRG LegioStop avec transition Optipress	#	d18	2.7	11.6	9.3
5357.022	Vanne droite JRG LegioStop avec transition Optipress		d22	4.8	11.9	12.6
5357.028	Vanne droite JRG LegioStop avec transition Optipress		d28	8.2	9.8	14.4
5358.015	Vanne droite JRG LegioStop avec transition		d15	2.7	5.2	2.9
5358.018	Vanne droite JRG LegioStop avec transition	Ш	d18	2.7	11.6	9.3
5358.022	Vanne droite JRG LegioStop avec transition Mapress		d22	4.8	11.9	12.6
5358.028	Vanne droite JRG LegioStop avec transition Mapress	-1000	d28	8.2	9.8	14.4

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5359.016	Vanne droite JRG LegioStop avec transition Mepla	T	d16	2.7	5.8	3.2
5359.020	Vanne droite JRG LegioStop avec transition Mepla		d20	2.7	12.1	9.7
5359.026	Vanne droite JRG LegioStop avec transition Mepla		d26	4.8	12.6	13.3
5359.032	Vanne droite JRG LegioStop avec transition Mepla		d32	8.2	10.3	15.2
5371.240	Vanne droite JRG LegioStop	•	1/2	2.7	11.5	6.4
5371.320	Vanne droite JRG LegioStop		3/4	4.8	11.1	8.9
5371.400	Vanne droite JRG LegioStop		1	8.2	9.2	9.7
5371.480	Vanne droite JRG LegioStop		11/4	13.7	9.0	13.2
5371.560	Vanne droite JRG LegioStop		1½	19.0	11.3	20.0
5371.640	Vanne droite JRG LegioStop		2	30.9	10.5	24.7
5371.720	Vanne droite JRG LegioStop		21/2	55.3	9.3	29.9
5444.000	Vanne droite encastrée quadruple JRG LegioStop Sanipex Classic		3/4	4.1	15.4	12.3
5444.002	Vanne droite encastrée quadruple JRG LegioStop Sanipex Classic		3/4	3.6	20.2	16.2
5450.110	Compteur d'eau froide		1/2	3.1	9.0	5.0
5450.010	Compteur d'eau froide		3/4	3.1	28.4	22.7
5450.120	Compteur d'eau chaude		1/2	3.1	9.0	5.0
5450.020	Compteur d'eau chaude		3/4	3.1	28.4	22.7
5452.000	Compteur d'eau avec générateur d'impulsions		3/4	3.1	28.4	22.7

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5458.045	Unité compacte JRG LegioStop sans compteur	I .	3/4	6.1	7.5	6.0
5458.055	Unité compacte JRG LegioStop avec compteur	Į .	3/4	3.8	19.4	15.5
5900.240	Vanne droite encastrée JRG LegioStop	-	1/2	5.0	3.2	1.8
5900.320	Vanne droite encastrée JRG LegioStop	I I	3/4	6.1	6.8	5.4
5900.400	Vanne droite encastrée JRG LegioStop		1	6.9	13.2	14.0
5910.320	Garniture de fermeture encastrée JRG LegioStop sans compteur		3/4	6.2	6.7	5.4
5916.320	Garniture de fermeture encastrée JRG LegioStop avec compteur		3/4	3.8	18.1	14.5
5920.240	Vanne équerre encastrée JRG LegioStop	- II-	1/2	5.6	2.6	1.5
5920.320	Vanne équerre encastrée JRG LegioStop		3/4	8.4	3.6	2.9
5921.240	Vanne équerre encastrée JRG LegioStop	A	1/2	5.6	2.6	1.5
5921.320	Vanne équerre encastrée JRG LegioStop		3/4	8.4	3.6	2.9

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
5925.015	Vanne droite encastrée JRG LegioStop à emboîter		12	2.7	11.5	6.4
5925.018	Vanne droite encastrée JRG LegioStop à emboîter		15	2.7	11.5	9.2
5925.022	Vanne droite encastrée JRG LegioStop à emboîter		20	4.8	11.1	11.7
5925.028	Vanne droite encastrée JRG LegioStop à emboîter		25	8.2	9.2	13.5
6020.080	Vanne à bille		1/4	5.4	0.2	-
6020.160	Vanne à bille		3/8	6.0	0.4	-
6020.240	Vanne à bille		1/2	16.3	0.3	0.2
6020.320	Vanne à bille		3/4	29.5	0.3	0.2
6020.400	Vanne à bille		1	43.0	0.3	0.3
6020.480	Vanne à bille		11/4	89.0	0.2	0.3
6020.560	Vanne à bille		1½	230.0	0.1	0.2
6020.640	Vanne à bille		2	265.0	0.1	0.2
6020.720	Vanne à bille		21/2	518.0	0.1	-
6020.800	Vanne à bille		3	820.0	0.1	-
6023.080	Vanne à bille avec Poignée papillon		1/4	5.4	0.2	-
6023.160	Vanne à bille avec Poignée papillon		3/8	6.0	0.4	-
6023.240	Vanne à bille avec Poignée papillon		1/2	16.3	0.3	0.2
6023.320	Vanne à bille avec Poignée papillon		3/4	29.5	0.3	0.2
6023.400	Vanne à bille avec Poignée papillon		1	43.0	0.3	0.3

Pertes de charges dans les régulateurs GF JRG (Eau 10°C)

N° catalogue	Désignation	Symbole	Dimension (")	Valeur Kvs [m3/h]	Valeur ζ [-]	Longueur de tube équivalente en m
6041.016	Vanne à bille PN 10 Sanipex MT		d16	5.4	0.2	0.1
6041.020	Vanne à bille PN 10 Sanipex MT	- 100 P	d20	6.0	0.4	0.3
6041.026	Vanne à bille PN 10 Sanipex MT		d26	16.3	0.3	0.3
6041.032	Vanne à bille PN 10 Sanipex MT		d32	29.5	0.3	0.4
6041.040	Vanne à bille PN 10 Sanipex MT		d40	43.0	0.3	0.5
6050.080	Vanne à bille en acier NIRO		1/4	5.4	0.2	-
6050.160	Vanne à bille en acier NIRO		3/8	6.0	0.4	-
6050.240	Vanne à bille en acier NIRO		1/2	16.3	0.3	0.2
6050.320	Vanne à bille en acier NIRO	The state of the s	3/4	29.5	0.3	0.2
6050.400	Vanne à bille en acier NIRO		1	43.0	0.3	0.3
6050.480	Vanne à bille en acier NIRO		11/4	89.0	0.2	0.3
6050.560	Vanne à bille en acier NIRO		1½	230.0	0.1	0.2
6050.640	Vanne à bille en acier NIRO		2	265.0	0.1	0.2
6050.720	Vanne à bille en acier NIRO		21/2	518.0	0.1	0.3
6050.800	Vanne à bille en acier NIRO		3	820.0	0.1	0.4

Pompes à eau

AXW 10

Baulänge	120 mm
Betriebsdruck max.	10 bar
Mediumtemperatur	+15°C bis +85°C
Zulässige Wasserhärte	65°C (max. 35°fH = 20°dH)
	85°C (max. 25°fH = 14°dH)
Erforderlicher Betriebsdruck bei bei 75°C Wassertemperatur bei 85°C Wassertemperatur Pro ±100 m Höhe	500 m über Meer 0.05 bar 0.30 bar ±0.01 bar
Gewicht	2.3 kg

Spannung		1×230 V, 50 Hz
Strom	Regelung	0.040.08 A
	min	0.04 A
Leistung	Regelung	47 W
	min	4 W

Zur Vermeidung von Kondenswasserbildung muss die Mediumtemperatur immer höher sein als die Umgebungstemperatur.

Umgebungstemp.	Medientemperatur			
°C	min. °C	max. °C		
15	15	85		
30	30	85		
35	35	85		
40	40	70		

Die Pumpe ist mit internem elektrischem Motorschutz ausgerüstet und benötigt keinen externen Motorschutz

Pumpengehäuse: Bronze

Option:

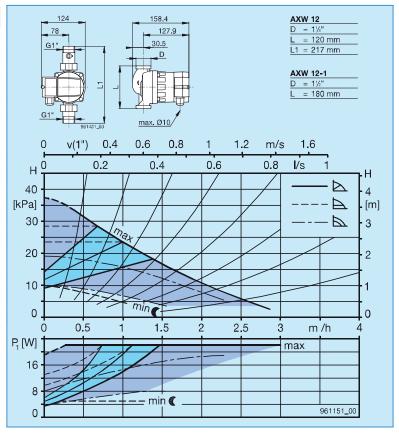
Absperrset

124 158.4 127.9 78 30.5 G1 1/4" max. Ø10. v(Ø18) 0.4 8.0 m/s 2 1.2 1.6 0.1 0.2 0.3 0.4 l/s 0.5 Н Н 8 8.0 [kPa] [m] 0.6 4 0.4 2 0.2 0 0 0.2 0.4 0.6 1.2 1.4 1.6 m /h P₁ [W] 6 4 961474_00 2

AXW 12, AXW 12-1

Baulänge	120/180 mm
Betriebsdruck max.	10 bar
Mediumtemperatur	+15°C bis +85°C
Zulässige Wasserhärte	65°C (max. 35°fF = 20°dH)
	85°C (max. 25°ff- = 14°dH)
Erforderlicher Betriebsdruck bei bei 75°C Wassertemperatur bei 85°C Wassertemperatur Pro ±100 m Höhe	500 m über Meer 0.05 bar 0.30 bar ±0.01 bar
Gewicht	2 . 3 k g

Spannung		1×230 V, 50 Hz
Strom	Regelung	0.050.19 A
	min	0.05 A
Leistung	Regelung	522 W
	min	5 W


Zur Vermeidung von Kondenswasserbildung muss die Mediumtemperatur immer höher sein als die Umgebungstemperatur.

Umgebungstemp.	Medientemperatur		
°C	min. °C	max. °C	
15	15	85	
30	30	85	
35	35	85	
40	40	70	

Die Pumpe ist mit internem elektrischem Motorschutz ausgerüstet und benötigt keinen externen Motorschutz.

Pumpengehäuse: Bronze

AXW 12: inklusive Absperrset AXW 12-1: Absperrset nicht erhältlich

Pompes à eau

Baulänge	150/180 mm
Betriebsdruck max.	10 bar
Mediumtemperatur	+15°C bis +85°C
Zulässige Wasserhärte	65°C (max. 35°fH = 20°dH)
	85°C (max. 25°fH = 14°dH)
Erforderlicher Betriebsdruck bei bei 75°C Wassertemperatur bei 85°C Wassertemperatur Pro ±100 m Höhe	500 m über Meer 0.05 bar 0.30 bar ±0.01 bar
Gewicht	2.3 kg

Spannung		1×230 V, 50 Hz	
Strom	Regelung	0.050.38 A	
	min	0.05 A	
Leistung	Regelung 545 W		
	min	5 W	

Zur Vermeidung von Kondenswasserbildung muss die Mediumtemperatur immer höher sein als die Umgebungstemperatur.

Umgebungstemp.	Medientemperatur		
°C	min. °C	max.°C	_
15	15	85	
30	30	85	_
35	35	85	_
40	40	70	_

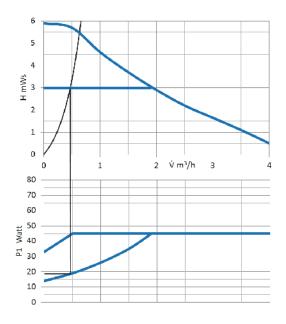
Die Pumpe ist mit internem elektrischem Motorschutz ausgerüstet und benötigt keinen externen Motorschutz.

Pumpengehäuse: Bronze

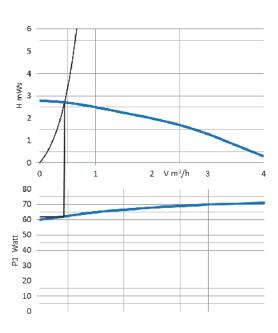
AXW 13: inklusive Absperrset AXW 13-1: Absperrset nicht erhältlich

110 +GF+

Consommation d'électricité des pompes de circulation d'eau


En ce qui concerne les pompes de circulation pour le chauffage, le nouveau règlement (CE) n° 641/2009 est en vigueur depuis le début de 2013 et fixe des exigences concrètes en matière d'efficacité des pompes. Ainsi, les pompes de chauffage (pompes à eau) doivent avoir un indice d'efficacité énergétique κ 0,27, pour qu'elles puissent toujours être mises sur le marché. À partir de 2015, un IEE κ 0,23 sera appliqué. Cette nouvelle réglementation exclut clairement les pompes de circulation pour les applications de circulation d'eau.

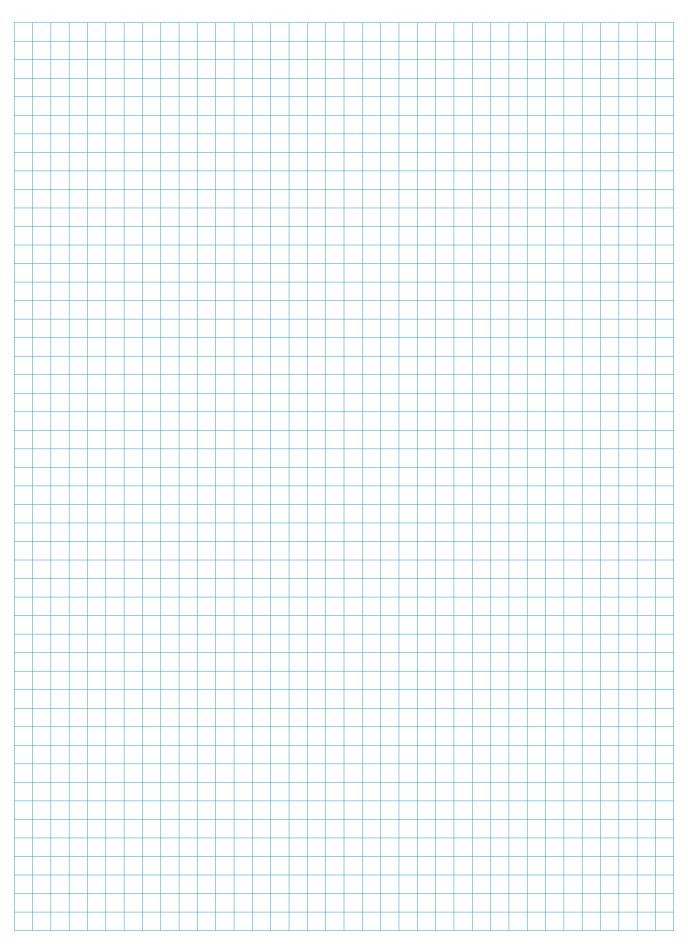
Cela est en partie dû au fait que derrière le calcul EEI se cache une utilisation classique pour le chauffage et ne fait donc aucune déclaration concernant une application de circulation d'eau chaude. Comparées aux pompes à chaleur, les pompes à eau domestiques n'ont pratiquement jamais à adapter leur vitesse aux conditions changeantes du système. Néanmoins, les pompes modernes sont bien sûr également utiles dans le cas de l'eau chaude et sont préférables aux pompes classiques non régulées.


Parce que le potentiel d'économies d'une pompe moderne résulte d'une part d'un moteur beaucoup plus efficace (de nos jours principalement des moteurs à aimants permanents synchrones, de moteurs asynchrones antérieurs) et d'autre part de la possibilité de définir plus précisément le point de fonctionnement.

Voici un exemple avec une AXW13 moderne de Biral et une WX13 conventionnelle.

Biral AXW13

Biral WX13


Dans une circulation d'eau chaude avec un débit volumique de 0,5 m3/h à une pression de 3 mCE. L'AXW13 a une puissance d'entrée P1 de 19 watts au point de fonctionnement, le WX13 nécessite 62 watts pour le même point de fonctionnement. L'AXW13 est réglé sur une pression constante de 3 mCE.

	Heures de service*	P1 [kW]	Energie [kWh/a]	Coûts [CHF/a]
AXW13	7300	0.019	139	35
WX13	7300	0.062	453	113

^{*} La pompe est stoppée avec une minuterie pendant 4 heures chaque 24 heures.

Une AXW13 économise ainsi sur les coûts d'électricité un peu moins de 80 francs par an.

Notes

Erfahren Sie mehr über unsere Produkte: En savoir plus sur nos produits: Per saperne di più sui nostri prodotti:

Den Ansprechpartner für Ihr Gebiet finden Sie auf unserer Website unter "Über uns". Vous trouverez la personne de contact de votre région sur notre site web, sous la rubrique "A propos de nous". Può trovare la persona di contatto della sua regione sul nostro sito web sotto "Chi siamo".

Georg Fischer Rohrleitungssysteme (Schweiz) AG Amsler-Laffon-Strasse 9, 8201 Schaffhausen Tel. 052 631 30 26

ch.ps@georgfischer.com www.gfps.com/ch Georg Fischer Systèmes de Tuyauteries (Suisse) SA Chemin d'Etraz 2, 1027 Lonay Tél. 021 803 35 35

Georg Fischer Sistemi per Tubazioni (Svizzera) SA Via Boscioro 20, 6962 Viganello/Lugano Tel. 091 972 26 53

